Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graded persistent activity in entorhinal cortex neurons

Abstract

Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time1,2. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential2. Here we show that individual neurons from layer V of the entorhinal cortex—which link the hippocampus to extensive cortical regions3—respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscarinic-dependent persistent activity.
Figure 2: Graded persistent activity.
Figure 3: Synaptic induction of persistent activity.
Figure 4: Persistent activity requires activity-dependent Ca2+ influx and a non-specific cation current.

Similar content being viewed by others

References

  1. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995)

    Article  CAS  Google Scholar 

  2. Fuster, J. M. Network memory. Trends Neurosci. 20, 451–459 (1997)

    Article  CAS  Google Scholar 

  3. Insausti, R., Herrero, M. T. & Witter, M. P. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7, 146–183 (1997)

    Article  CAS  Google Scholar 

  4. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat. 20, 11–21 (1957)

    Article  CAS  Google Scholar 

  5. Squire, L. R. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380–1386 (1991)

    Article  ADS  CAS  Google Scholar 

  6. Young, B., Otto, T., Fox, G. D. & Eichenbaum, H. Memory representation within the parahippocampal region. J. Neurosci. 17, 5183–5195 (1997)

    Article  CAS  Google Scholar 

  7. Suzuki, W. A., Miller, E. K. & Desimone, R. Object and place memory in the macaque entorhinal cortex. J. Neurophysiol. 78, 1062–1081 (1997)

    Article  CAS  Google Scholar 

  8. Bunsey, M. & Eichenbaum, H. Critical role of the parahippocampal region for paired-associate learning in rats. Behav. Neurosci. 107, 740–747 (1993)

    Article  CAS  Google Scholar 

  9. Higuchi, S. & Miyashita, Y. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl Acad. Sci. USA 93, 739–743 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Stern, C. E., Sherman, S. J., Kirchhoff, B. A. & Hasselmo, M. E. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 11, 337–346 (2001)

    Article  CAS  Google Scholar 

  11. Room, P. & Groenewegen, H. J. Connections of the parahippocampal cortex. I. Cortical afferents. J. Comp. Neurol. 251, 415–450 (1986)

    Article  CAS  Google Scholar 

  12. Rempel-Clower, N. L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb. Cortex 10, 851–865 (2000)

    Article  CAS  Google Scholar 

  13. Naber, P. A., Lopes da Silva, F. H. & Witter, M. P. Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus 11, 99–104 (2001)

    Article  CAS  Google Scholar 

  14. Alonso, J. R. & Amaral, D. G. Cholinergic innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferase immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeys. J. Comp. Neurol. 355, 135–170 (1995)

    Article  CAS  Google Scholar 

  15. Hasselmo, M. E. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci 3, 351–359 (1999)

    Article  CAS  Google Scholar 

  16. Krnjevic, K. Central cholinergic mechanisms and function. Prog. Brain Res. 1993, 285–292 (1993)

    Article  Google Scholar 

  17. Hamam, B. N., Kennedy, T. E., Alonso, A. & Amaral, D. G. Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. J. Comp. Neurol. 418, 457–472 (2000)

    Article  CAS  Google Scholar 

  18. Andrade, R. Cell excitation enhances muscarinic cholinergic responses in rat association cortex. Brain Res. 548, 81–93 (1991)

    Article  CAS  Google Scholar 

  19. Fraser, D. D. & MacVicar, B. A. Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J. Neurosci. 16, 4113–4128 (1996)

    Article  CAS  Google Scholar 

  20. Haj-Dahmane, S. & Andrade, R. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol. 80, 1197–1210 (1998)

    Article  CAS  Google Scholar 

  21. Klink, R. & Alonso, A. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J. Neurophysiol. 77, 1813–1828 (1997)

    Article  CAS  Google Scholar 

  22. Fransén, E., Alonso, A. A. & Hasselmo, M. E. Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J. Neurosci. 22, 1081–1097 (2002)

    Article  Google Scholar 

  23. Boeijinga, P. H. & Lopes da Silva, F. H. Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling. Brain Res. 478, 257–268 (1989)

    Article  CAS  Google Scholar 

  24. Wang, X.-J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 427–488 (2001)

    Article  Google Scholar 

  25. Partridge, L. D. & Valenzuela, C. F. Block of hippocampal CAN channels by flufenamate. Brain Res. 867, 143–148 (2000)

    Article  CAS  Google Scholar 

  26. Lisman, J. E., Fellous, J. M. & Wang, X. J. A role for NMDA-receptor channels in working memory. Nature Neurosci. 1, 273–275 (1998)

    Article  CAS  Google Scholar 

  27. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000)

    Article  CAS  Google Scholar 

  28. Insausti, R., Amaral, D. G. & Cowan, W. M. The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neurol. 264, 356–395 (1987)

    Article  CAS  Google Scholar 

  29. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl Acad. Sci. USA 93, 13481–13486 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Dickson, C. T. & Alonso, A. Muscarinic induction of synchronous population activity in the entorhinal cortex. J. Neurosci. 17, 6729–6744 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Buzsáki, M. Petrides and W. A. Suzuki for comments on the manuscript. This work was supported by the Canadian Institutes of Health Research and the U.S. National Institutes of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel A. Alonso.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, A., Hamam, B., Fransén, E. et al. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002). https://doi.org/10.1038/nature01171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01171

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing