Respiration in the open ocean


A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open question.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995)

    Article  Google Scholar 

  3. 3

    Ducklow, H. W. Ocean biogeochemical fluxes: New production and export of organic matter from the upper ocean. Rev. Geophys. 33 (Suppl.), 1271–1276 (1995)

    ADS  Article  Google Scholar 

  4. 4

    Balkanski, Y., Monfray, P., Batle, M. & Heimann, M. Ocean primary production derived from satellite data: An evaluation with atmospheric oxygen measurements. Glob. Biogeochem. Cycles 13, 257–271 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Morel, A. & Antoine, D. Small critters—big effects. Science 296, 1980–1982 (2002)

    CAS  Article  Google Scholar 

  6. 6

    Williams, P. J. LeB. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanolog. Acta 4, 359–364 (1981)

    Google Scholar 

  7. 7

    Suess, E. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288, 260–263 (1980)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Karl, D. M., Hebel, D. V., Björkman, K. & Letelier, R. M. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 43, 1270–1286 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Lefévre, D., Denis, M., Lambert, C. E. & Miguel, J.-C. Is DOC the main source of organic matter remineralization in the ocean water column? J. Mar. Syst. 7, 281–291 (1996)

    ADS  Article  Google Scholar 

  10. 10

    Robinson, C. et al. Plankton respiration in the eastern Atlantic Ocean. Deep-Sea Res. I 49, 787–813 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Duarte, C. M., Arístegui, J., González, N., Agustí, S. & Anadón, R. Evidence for a heterotrophic subtropical NE Atlantic. Limnol. Oceanogr. 46, 425–428 (2001)

    ADS  Article  Google Scholar 

  12. 12

    Harrison, W. G. et al. Basin-scale variability in plankton biomass and community metabolism in the subtropical North Atlantic Ocean. Deep-Sea Res. II 48, 2241–2269 (2001)

    ADS  Article  Google Scholar 

  13. 13

    Gonzalez, N. et al. The metabolic balance of the planktonic community at the N. Atlantic Subtropical Gyre: The role of mesoscale instabilities. Limnol. Oceanogr. 46, 946–952 (2001)

    ADS  Article  Google Scholar 

  14. 14

    del Giorgio, P. A., Cole, J. J. & Cimbleris, A. Respiration rates in bacteria exceed plankton production in unproductive aquatic systems. Nature 385, 148–151 (1997)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Duarte, C. M. & Agustí, S. The CO2 balance of unproductive aquatic ecosystems. Science 281, 234–236 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Williams, P. J. LeB. The balance of plankton respiration and photosynthesis in the open ocean. Nature 394, 55–57 (1998)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Duarte, C. M., Agustí, S., del Giorgio, P. A. & Cole, J. J. Regional carbon imbalances in the oceans. Science 284, 1735b (1999)

    Article  Google Scholar 

  18. 18

    Biddanda, B. & Benner, R. Major contribution from mesopelagic plankton to heterotrophic metabolism in the upper ocean. Deep-Sea Res. I 44, 2069–2085 (1997)

    CAS  Article  Google Scholar 

  19. 19

    Moriarty, D. J. W. & O'Donohue, M. J. Organic carbon transport from the Southern Ocean and bacterial growth in the Antarctic Intermediate Water masses of the Tasman Sea. Mar. Ecol. Prog. Ser. 119, 291–297 (1995)

    ADS  Article  Google Scholar 

  20. 20

    Serret, P., Robinson, C., Fernández, E., Teira, E. & Tilstone, G. Latitudinal variation of the balance between plankton photosynthesis and respiration in the eastern Atlantic Ocean. Limnol. Oceangr. 46, 1642–1652 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Arístegui, J. & Harrison, W. G. Decoupling of primary production and community respiration in the ocean: implications for regional carbon studies. Aquat. Microb. Ecol. (in the press)

  22. 22

    Pomeroy, L. R. & Johannes, R. E. Occurrence respiration of ultraplankton in the upper 500 meters of the ocean. Deep-Sea Res. 15, 381–391 (1968)

    Google Scholar 

  23. 23

    Menzel, D. W. & Ryther, J. H. Organic carbon and the oxygen minimum in the South Atlantic Ocean. Deep-Sea Res. 15, 327–384 (1971)

    Google Scholar 

  24. 24

    Vidal, M., Duarte, C. M. & Agustí, S. Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean. Limnol. Oceanogr. 44, 106–115 (1999)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Wyrtki, K. The oxygen minima in relation to ocean circulation. Deep-Sea Res. 9, 11–23 (1962)

    CAS  Google Scholar 

  26. 26

    Garfield, P. C., Packard, T. T., Friederich, G. E. & Codispoti, L. A. A subsurface particle maximum layer and enhanced microbial activity in the secondary nitrite maximum of the northeastern tropical Pacific Ocean. J. Mar. Res. 41, 747–768 (1983)

    CAS  Article  Google Scholar 

  27. 27

    Packard, T. T. & Williams, P. J. LeB. Rates of respiratory oxygen consumption and electron transport in surface seawater from the northwest Atlantic. Oceanolog. Acta 4, 351–358 (1981)

    CAS  Google Scholar 

  28. 28

    Packard, T. T. Respiration and respiratory electron transport activity in plankton from the Northwest African upwelling. J. Mar. Res. 65, 711–741 (1979)

    Google Scholar 

  29. 29

    Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep-Sea Res. II 46, 2761–2792 (1999)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Doval, M. D. & Hansell, D. A. Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar. Chem. 68, 249–264 (2000)

    CAS  Article  Google Scholar 

  31. 31

    Fiadeiro, M. E. & Craig, H. Three-dimensional modeling of tracers in the deep Pacific Ocean: I. Salinity and oxygen. J. Mar. Res. 36, 323–355 (1978)

    Google Scholar 

  32. 32

    Novoselov, A. A. Studies of oxygen consumption in the northern part of the Atlantic. Okeanologiya 2, 84–92 (1962)

    CAS  Google Scholar 

  33. 33

    Hansell, D. A. & Carlson, C. A. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395, 263–266 (1998)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Jahnke, R. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996)

    ADS  CAS  Article  Google Scholar 

  35. 35

    King, F. D., Devol, A. H. & Packard, T. T. Plankton metabolic activity in the eastern tropical North Pacific. Deep-Sea Res. 25, 689–704 (1978)

    ADS  Article  Google Scholar 

  36. 36

    Joiris, C. et al. A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. Netherlands J. Sea Res. 16, 260–275 (1982)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Holligan, P. M., Williams, P. J. LeB, Purdie, D. & Harris, R. P. Photosynthesis, respiration and nitrogen supply of plankton populations in stratified, frontal and tidally mixed shelf waters. Mar. Ecol. Prog. Ser. 17, 201–213 (1984)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Christensen, J. P. & Packard, T. T. Oxygen utilization and plankton metabolism in a Washington Fjord. Estuar. Coast. Mar. Sci. 4, 339–347 (1976)

    ADS  Article  Google Scholar 

  39. 39

    Hernández-León, S. et al. Large-scale and mesoscale distribution of plankton biomass and metabolic activity in the Northeastern Central Atlantic. J. Oceanogr. 55, 471–482 (1999)

    Article  Google Scholar 

  40. 40

    del Giorgio, P. A. & Cole, J. J. Marine Microbial Ecology (ed. Kirchman, D.) 289–325 (Plenum, New York, 2000)

    Google Scholar 

  41. 41

    Schlesinger, W. H. Biogeochemistry. An Analysis of Global Change (Academic, San Diego, 1991)

    Google Scholar 

  42. 42

    Bauer, J. E., Williams, P. M. & Druffel, E. R. M. 14C activity of dissolved organic carbon fractions in the central North Pacific and Sargasso Sea. Nature 357, 667–670 (1992)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Woodwell, G. M. et al. Biotic feedbacks in the warming of the earth. Clim. Change 40, 495–518 (1998)

    CAS  Article  Google Scholar 

  44. 44

    Pomeroy, L. R., Wiebe, W. J., Deibel, D., Thompson, R. J. & Rowe, G. T. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser. 75, 143–159 (1991)

    ADS  Article  Google Scholar 

  45. 45

    Calbet, A. Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems. Limnol. Oceanogr. 48, 1824–1830 (2001)

    ADS  Article  Google Scholar 

  46. 46

    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Jenkins, W. & Goldman, J. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Sci. 43, 465–491 (1985)

    CAS  Google Scholar 

  48. 48

    Duarte, C. M. & Cebrián, J. The fate of marine autotrophic production. Limnol. Oceanogr. 41, 1758–1766 (1996)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Bender, M., Ellis, T., Tans, P., Francey, R. & Lowe, D. Variability in the O2/N2 ratio of the southern hemisphere air, 1991–1994: Implications for the ocean carbon cycle. Glob. Biogeochem. Cycles 10, 9–21 (1996)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Carlson, C. A., Ducklow, H. W., Hansell, D. A. & Smith, W. O. Jr Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol. Oceanogr. 43, 375–386 (1998)

    ADS  CAS  Article  Google Scholar 

  51. 51

    Baines, S. B. & Pace, M. L. The production of dissolved organic carbon by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991)

    ADS  Article  Google Scholar 

  52. 52

    Cole, J. J., Findlay, S. & Pace, M. L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988)

    ADS  Article  Google Scholar 

  53. 53

    Hoppe, H.-G., Gocke, K., Koppe, R. & Begler, C. Bacterial growth and primary production along a north-south transect in the Atlantic Ocean. Nature 416, 168–171 (2002)

    ADS  CAS  Article  Google Scholar 

  54. 54

    Gattuso, J.-P., Franjignoulle, M. & Wollast, R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29, 405–433 (1998)

    Article  Google Scholar 

  55. 55

    Mackenzie, F. T., Lerman, A. & Ver, L. M. B. Role of the continental margin in the global carbon balance during the past three centuries. Geology 26, 423–426 (1998)

    ADS  CAS  Article  Google Scholar 

  56. 56

    Bauer, J. E. & Druffel, E. R. M. Ocean margins as a significant source of organic matter to the deep open ocean. Nature 392, 482–485 (1998)

    ADS  CAS  Article  Google Scholar 

  57. 57

    Meybeck, M. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982)

    ADS  CAS  Article  Google Scholar 

  58. 58

    Duce, R. A. et al. The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles 5, 193–259 (1991)

    ADS  CAS  Article  Google Scholar 

  59. 59

    Cornell, S., Rendell, A. & Jickells, T. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376, 243–246 (1995)

    ADS  CAS  Article  Google Scholar 

  60. 60

    Kumar, N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–680 (1995)

    ADS  CAS  Article  Google Scholar 

  61. 61

    Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the ocean carbon cycle. Nature 353, 60–62 (1991)

    ADS  CAS  Article  Google Scholar 

  62. 62

    Cherrier, J., Bauer, J. E., Druffel, E. R. M., Coffin, R. B. & Chanton, J. P. Radiocarbon in marine bacteria: evidence for the ages of assimilated carbon. Limnol. Oceanogr. 44, 730–736 (1999)

    ADS  CAS  Article  Google Scholar 

  63. 63

    Christensen, J. P. Carbon export from continental shelves, denitrification and atmospheric carbon dioxide. Continent. Shelf Res. 14, 547–576 (1994)

    ADS  Article  Google Scholar 

  64. 64

    Sundquist, E. T. The global carbon dioxide budget. Science 259, 934–941 (1993)

    ADS  CAS  Article  Google Scholar 

  65. 65

    Emerson, S. et al. Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389, 951–954 (1997)

    ADS  CAS  Article  Google Scholar 

  66. 66

    Sambrotto, R. N. et al. Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363, 248–250 (1993)

    ADS  CAS  Article  Google Scholar 

  67. 67

    Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998)

    CAS  Article  Google Scholar 

  68. 68

    Raich, J. W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980-94. Glob. Change Biol. 8, 800–812 (2002)

    ADS  Article  Google Scholar 

  69. 69

    Takahashi, T. et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49, 1601–1622 (2002)

    ADS  CAS  Article  Google Scholar 

  70. 70

    Lefèvre, N. & Taylor, A. Estimating pCO2 from sea surface temperatures in the Atlantic gyres. Deep-Sea Res. I 49, 539–554 (2002)

    Article  Google Scholar 

  71. 71

    Smith, E. M. & Kemp, W. M. Seasonal and regional variations in plankton community production and respiration for the Chesapeake Bay. Mar. Ecol. Prog. Ser. 116, 217–231 (1995)

    ADS  Article  Google Scholar 

  72. 72

    Rivkin, R. B. & Legendre, L. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291, 2398–2400 (2001)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Pace, T. Bouvier and E. Smith for comments on the manuscript, and particularly P. leB. Williams for extensive input; we also thank H. Canut for encouragement and S. Agustí for inspiration. This work was supported by the Spanish Plan Nacional de Investigación y Desarrollo, the Cátedra Programme of the Banco de Bilbao y Vizcaya Foundation, and the US National Science Foundation.

Author information



Corresponding author

Correspondence to Paul A. del Giorgio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

del Giorgio, P., Duarte, C. Respiration in the open ocean. Nature 420, 379–384 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing