Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pressure-induced crystallization of a spin liquid


Liquids are expected to crystallize at low temperature. The only exception is helium, which can remain liquid at 0 K, owing to quantum fluctuations1,2. Similarly, the atomic magnetic moments (spins) in a magnet are expected to order at a temperature scale set by the Curie–Weiss temperature θCW (ref. 3). Geometrically frustrated magnets represent an exception. In these systems, the pairwise spin interactions cannot be simultaneously minimized because of the lattice symmetry4. This can stabilize a liquid-like state of short-range-ordered fluctuating moments well below θCW (refs 5–7). Here we use neutron scattering to observe the spin liquid state in a geometrically frustrated system, Tb2Ti2O7, under conditions of high pressure (9 GPa) and low temperature (1 K). This compound is a three-dimensional magnet with θCW = -19 K, where the negative value indicates antiferromagnetic interactions. At ambient pressure Tb2Ti2O7 remains in a spin liquid state down to at least 70 mK (ref. 8). But we find that, under high pressure, the spins start to order or ‘crystallize’ below 2.1 K, with antiferromagnetic order coexisting with liquid-like fluctuations. These results indicate that a spin liquid/solid mixture can be induced by pressure in geometrically frustrated systems.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Tb2Ti2O7: raw neutron diffraction spectra (neutron counts per hour) for three pressures P at 1.4 K.
Figure 2: Tb2Ti2O7: neutron diffraction spectra at P = 7.1 GPa.
Figure 3: Temperature dependence of the modulation amplitude A(P,T) for the pressures P = 0, 5 and 7.1 GPa, where A(P,T) = Imax - Imin, the difference in extrema of the diffuse intensity in our experimental range.
Figure 4: Magnetic diffuse intensity in the spin liquid state at P = 0, 5 and 7.1 GPa.


  1. Keeson, W. H. Helium (Elsevier, Amsterdam, 1942)

    Google Scholar 

  2. Simon, F. E. & Swenson, C. A. The liquid–solid transition in helium near absolute zero. Nature 165, 829–831 (1950)

    ADS  CAS  Article  Google Scholar 

  3. Morrish, A. The Physical Principles of Magnetism (Wiley & Sons, New York, 1965)

    Google Scholar 

  4. Reimers, J. N., Berlinsky, A. J. & Shi, A. C. Mean-field approach to magnetic ordering in highly frustrated pyrochlores. Phys. Rev. B 43, 865–878 (1991)

    ADS  CAS  Article  Google Scholar 

  5. Lee, S.-H. et al. Isolated spin pairs and two-dimensional magnetism in SrCr9pGa12–9pO19 . Phys. Rev. Lett. 76, 4424–4427 (1996)

    ADS  CAS  Article  Google Scholar 

  6. Schiffer, P., Ramirez, A. P., Huse, D. A. & Valentino, A. J. Investigation of the field induced antiferromagnetic phase transition in the frustrated magnet: gadolinium gallium garnet. Phys. Rev. Lett. 73, 2500–2503 (1994)

    ADS  CAS  Article  Google Scholar 

  7. Petrenko, O. A., Ritter, C., Yethiraj, M. & Paul, D. McK. Investigation of the low-temperature spin-liquid behavior of the frustrated magnet gadolinium gallium garnet. Phys. Rev. Lett. 80, 4570–4573 (1998)

    ADS  CAS  Article  Google Scholar 

  8. Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7 . Phys. Rev. Lett. 82, 1012–1015 (1999)

    ADS  CAS  Article  Google Scholar 

  9. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001)

    ADS  CAS  Article  Google Scholar 

  10. Champion, J. D. M. et al. Er2Ti2O7: Evidence of order by disorder in a frustrated quantum antiferromagnet. Phys. Rev. Lett. (2001) (submitted); preprint cond-mat/0112007 at 〈

  11. Palmer, S. E. & Chalker, J. T. Order induced by dipolar interactions in a geometrically frustrated antiferromagnet. Phys. Rev. B. 62, 488–492 (2000)

    ADS  CAS  Article  Google Scholar 

  12. Ferey, G., de Pape, R., Leblanc, M. & Pannetier, J. Ordered magnetic frustration: VIII. Crystal and magnetic structures of the pyrochlore form of FeF3 between 2.5 and 25 K from powder neutron diffraction. Comparison with the other varieties of FeF3 . Rev. Chim. Minér. 23, 474–484 (1986)

    CAS  Google Scholar 

  13. Champion, J. D. M. et al. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7 . Phys. Rev. B 64, 140407 (2001)

    ADS  Article  Google Scholar 

  14. Gaulin, B. D., Reimers, J. N., Mason, T. E., Greedan, J. E. & Tun, Z. Spin freezing in the geometrically frustrated pyrochlore Tb2Mo2O7 . Phys. Rev. Lett. 69, 3244–3247 (1992)

    ADS  CAS  Article  Google Scholar 

  15. Luo, G., Hess, S. T. & Corruccini, L. R. Low temperature magnetic properties of the geometrically frustrated pyrochlores Tb2Ti2O7, Gd2Ti2O7, Gd2Sn2O7 . Phys. Lett. A 291, 306–310 (2001)

    ADS  CAS  Article  Google Scholar 

  16. Gingras, M. J. P. et al. Thermodynamic and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7 . Phys. Rev. B 62, 6496–6511 (2000)

    ADS  CAS  Article  Google Scholar 

  17. Yasui, Y. et al. Static correlation and dynamical properties of Tb3+ moments in Tb2Ti2O7—Neutron scattering study. J. Phys. Soc. Jpn 71, 599–609 (2002)

    ADS  CAS  Article  Google Scholar 

  18. den Hertog, B. C. & Gingras, M. J. P. Dipolar interactions and origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430–3433 (2000)

    ADS  CAS  Article  Google Scholar 

  19. Kao, Y. J., Enjalran, M. & Gingras, M. J. P. Understanding paramagnetic correlations in the spin-liquid pyrochlore Tb2Ti2O7. Preprint cond-mat/0207270 at 〈〉 (2002).

  20. Goncharenko, I. N., Glazkov, V. P., Irodova, A. V., Lavrova, O. A. & Somenkov, V. A. Compressibility of dihydrides of transition metals. J. Alloys Comp. 179, 253–257 (1992)

    CAS  Article  Google Scholar 

  21. Goncharenko, I. N. & Mirebeau, I. Magnetic neutron diffraction under very high pressures. Study of europium monochalcogenides. Rev. High Press. Sci. Technol. 7, 475–480 (1998)

    CAS  Article  Google Scholar 

  22. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993)

    ADS  Article  Google Scholar 

  23. Greedan, J. E., Reimers, J. N., Stager, C. V. & Penny, S. L. Neutron-diffraction study of magnetic ordering in the pyrochlore series R2Mo2O7 (R = Nd,Tb,Y). Phys. Rev B 43, 5682–5691 (1991)

    ADS  CAS  Article  Google Scholar 

  24. Tsui, Y. K., Snyder, J. & Schiffer, P. Analog to the 4He melting curve in a model geometrically frustrated magnet. Can. J. Phys. 79, 1439–1446 (2001)

    ADS  CAS  Article  Google Scholar 

  25. Reimers, J. N. Diffuse-magnetic-scattering calculations for frustrated antiferromagnets. Phys. Rev. B 46, 193–202 (1992)

    ADS  CAS  Article  Google Scholar 

  26. Canals, B. & Garanin, D. A. Spin liquid phase in the pyrochlore antiferromagnet. Can. J. Phys. 79, 1323–1331 (2001)

    ADS  CAS  Article  Google Scholar 

Download references


We thank J. Rodríguez-Carvajal for help in the structural analysis, and J. Hodges for discussions. P.C.-P. was supported by Fundação para a Ciência e a Tecnologia, Portugal; M.G. was supported by NSERC of Canada, the Province of Ontario and Research Corporation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. Mirebeau.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirebeau, I., Goncharenko, I., Cadavez-Peres, P. et al. Pressure-induced crystallization of a spin liquid. Nature 420, 54–57 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing