Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Macroevolution simulated with autonomously replicating computer programs

Abstract

The process of adaptation occurs on two timescales. In the short term, natural selection merely sorts the variation already present in a population, whereas in the longer term genotypes quite different from any that were initially present evolve through the cumulation of new mutations. The first process is described by the mathematical theory of population genetics. However, this theory begins by defining a fixed set of genotypes and cannot provide a satisfactory analysis of the second process because it does not permit any genuinely new type to arise. The evolutionary outcome of selection acting on novel variation arising over long periods is therefore difficult to predict. The classical problem of this kind is whether ‘replaying the tape of life’ would invariably lead to the familiar organisms of the modern biota1,2. Here we study the long-term behaviour of populations of autonomously replicating computer programs and find that the same type, introduced into the same simple environment, evolves on any given occasion along a unique trajectory towards one of many well-adapted end points.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variety of evolutionary end points.
Figure 2

Similar content being viewed by others

References

  1. Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton, New York, 1989)

    Google Scholar 

  2. Dykhuizen, D. Experimental studies of natural selection in bacteria. Annu. Rev. Ecol Syst. 21, 373–398 (1990)

    Article  Google Scholar 

  3. Fisher, R. A. The Genetical Theory of Natural Selection (Dover, New York, 1930)

    Book  Google Scholar 

  4. Atwood, K. C., Schneider, L. K. & Ryan, F. J. Selective mechanisms in bacteria. Cold Spring Harb. Symp. Quant. Biol. 16, 345–355 (1951)

    Article  CAS  PubMed  Google Scholar 

  5. Gerrish, P. J. The rhythm of microbial adaptation. Nature 413, 299–302 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Dykhuizen, D. & Hartl, D. L. Evolution of competitive ability in Escherichia coli. Evolution 35, 581–594 (1981)

    Article  PubMed  Google Scholar 

  7. Travisano, M., Mongold, J. A., Bennett, A. F. & Lenski, R. E. Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267, 87–90 (1995)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Kramer, F. R., Mills, D. R., Cole, P. E., Nishihara, T. & Spiegelman, S. Evolution in vitro: sequence and phenotype of a mutant RNA resistant to ethidium bromide. J. Mol. Biol. 89, 719–736 (1974)

    Article  CAS  PubMed  Google Scholar 

  9. Bull, J. J. et al. Exceptional convergent evolution in a virus. Genetics 147, 1497–1507 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakatsu, C. H. et al. Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp. J. Bacteriol. 180, 4325–4331 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lenski, R. & Travisano, M. Dynamics of adaptation and diversification: a 10,000 generation experiment with bacterial populations. Proc. Natl Acad. Sci. USA 91, 6808–6814 (1994)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  12. Korona, R., Nakatsu, C. H., Forney, L. J. & Lenski, R. E. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc. Natl Acad. Sci. USA 91, 9037–9041 (1994)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Travisano, M. Long-term experimental evolution in Escherichia coli. VI. Environmental constraints on adaptation and divergence. Genetics 146, 471–479 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hartley, B. S. Experimental evolution of ribitol dehydrogenase. Microorganisms as Model Systems for Studying Evolution (ed. Mortlock, R. P.) 23–54 (Plenum, New York, 1984)

    Chapter  Google Scholar 

  15. Yin, J. Evolution of bacteriophage T7 in a growing plaque. J. Bacteriol. 175, 1272–1277 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohan, F. M. & Hoffmann, A. A. Genetic divergence under uniform selection. II. Different responses to selection for knockdown resistance to ethanol among Drosophila melanogaster populations and their replicate lines. Genetics 114, 145–163 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffmann, A. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 83, 637–643 (1999)

    Article  PubMed  Google Scholar 

  18. Ray, T. S. An approach to the synthesis of life. Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity (eds Farmer, D. J., Langton, C., Rasmussen, S. & Taylor, C.) Vol. 11 371–408 (Addison Wesley, Redwood City, California, 1991)

    Google Scholar 

  19. Ray, T. S. Tierra v. 5.0, with documentation. Available via anonymous ftp from the Tierra home page at http://www.isd.atr.co.jp/~ray/tierra

  20. Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Yedid, G. & Bell, G. Microevolution in an electronic microcosm. Am. Nat. 157, 465–487 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Mani, G. S. & Clarke, B. C. Mutational order: a major stochastic process in evolution. Proc. R. Soc. Lond. B 240, 29–37 (1990)

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Johnson, P. A., Lenski, R. E. & Hoppensteadt, F. C. Theoretical analysis of divergence in mean fitness between genetically identical populations. Proc. R. Soc. Lond. B 259, 125–130 (1995)

    Article  ADS  Google Scholar 

  24. Wahl, L. M. & Krakauer, D. C. Models of experimental evolution: the role of genetic chance and selective necessity. Genetics 156, 1437–1448 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Adami, C. Learning and complexity in genetic auto-adaptive systems. Physica D 80, 154–170 (1995)

    Article  ADS  Google Scholar 

  26. Adami, C., Ofria, C. & Collier, T. C. Evolution of biological complexity. Proc. Natl Acad. Sci. USA 97, 4463–4468 (2000)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  27. Spiegelman, S. An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4, 213–253 (1971)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Research Grant from the Natural Sciences and Engineering Research Council of Canada to G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Bell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yedid, G., Bell, G. Macroevolution simulated with autonomously replicating computer programs. Nature 420, 810–812 (2002). https://doi.org/10.1038/nature01151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing