Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab


Hydrothermal vents along the mid-ocean ridges host ephemeral ecosystems of diverse endemic fauna including several crustacean species1,2,3,4, some of which undergo planktonic development as larvae up to 1,000 m above and 100 km away from the vents5,6. Little is known about the role of vision in the life history of vent fauna. Here we report that planktonic zoea larvae of the vent crab Bythograea thermydron possess image-forming compound eyes with a visual pigment sensitive to the blue light of mesopelagic waters. As they metamorphose and begin to descend to and settle at the vents, they lose their image-forming optics and develop high-sensitivity naked-retina eyes. The spectral absorbance of the visual pigment in these eyes shifts towards longer wavelengths from larva to postlarva to adult. This progressive visual metamorphosis trades imaging for increased sensitivity, and changes spectral sensitivity from the blue wavelengths of the larval environment towards the dim, longer wavelengths7 produced in the deeper bathypelagic vent environment of the adults. As hydrothermal vents produce light7, vision may supplement thermal and chemical senses to orient postlarval settlement at vent sites.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ontogeny of the eye of B. thermydron.
Figure 2: Absorbance spectra for B. thermydron visual pigments.


  1. Grassle, J. F. Hydrothermal vent animals: distribution and biology. Science 229, 713–717 (1985)

    ADS  CAS  Article  Google Scholar 

  2. Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H. & Elderfield, H. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 321, 33–37 (1986)

    ADS  CAS  Article  Google Scholar 

  3. Van Dover, C. L. Hydrothermal Vents and Processes (eds Parson, L. M., Walker, C. L. & Dixon, D. R.) Special Publication No. 87 257–294 (Geological Society, London, 1995)

    Google Scholar 

  4. Van Dover, C. L. et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818–823 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Herring, P. J. & Dixon, D. R. Extensive deep-sea dispersal of postlarval shrimp from a hydrothermal vent. Deep-Sea Res. I 45, 2105–2118 (1998)

    Article  Google Scholar 

  6. Pond, D., Dixon, D. & Sargent, J. Wax-ester reserves facilitate dispersal of hydrothermal vent shrimps. Mar. Ecol. Prog. Ser. 146, 289–290 (1997)

    ADS  CAS  Article  Google Scholar 

  7. Van Dover, C. L., Reynolds, G. T., Chave, A. D. & Tyson, J. A. Light at deep-sea hydrothermal vents. Geophys. Res. Lett. 23, 2049–2052 (1996)

    ADS  Article  Google Scholar 

  8. Renninger, G. H. et al. Sulfide as a chemical stimulus for deep-sea hydrothermal vent shrimp. Biol. Bull. 189, 69–76 (1995)

    CAS  Article  Google Scholar 

  9. Van Dover, C. L., Szuts, E. Z., Chamberlain, S. C. & Cann, J. R. A novel eye in ‘eyeless’ shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature 337, 458–460 (1989)

    ADS  CAS  Article  Google Scholar 

  10. O'Neill, P. J. et al. The morphology of the dorsal eye of the hydrothermal vent shrimp, Rimicaris exoculata. Vis. Neurosci. 12, 861–875 (1995)

    CAS  Article  Google Scholar 

  11. Jinks, R. N. et al. Sensory adaptations in hydrothermal vent shrimps from the Mid-Atlantic Ridge. Cah. Biol. Mar. 39, 309–312 (1998)

    Google Scholar 

  12. Cronin, T. W. & Jinks, R. N. Ontogeny of vision in marine crustaceans. Am. Zool. 41, 1098–1107 (2001)

    Google Scholar 

  13. Epifanio, C. E., Perovich, G., Dittel, A. I. & Cary, S. C. Development and behavior of megalopa larvae and juveniles of the hydrothermal vent crab Bythograea thermydron. Mar. Ecol. Prog. Ser. 185, 147–154 (1999)

    ADS  Article  Google Scholar 

  14. Land, M. F. The sight of deep wet heat. Nature 337, 404 (1989)

    ADS  Article  Google Scholar 

  15. Gaten, E., Herring, P. J., Shelton, P. M. J. & Johnson, M. L. Comparative morphology of the eyes of postlarval bresiliid shrimps from the region of hydrothermal vents. Biol. Bull. 194, 267–280 (1998)

    CAS  Article  Google Scholar 

  16. Herring, P. J., Gaten, E. & Shelton, P. M. J. Are vent shrimps blinded by science? Nature 398, 116 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Frank, T. M. & Case, J. F. Visual spectral sensitivities of bioluminescent deep-sea crustaceans. Biol. Bull. 175, 261–273 (1988)

    Article  Google Scholar 

  18. White, S. N., Chave, A. D. & Reynolds, G. T. Investigations of ambient light emission at deep-sea hydrothermal vents. J. Geophys. Res. 107, EPM 1–13 (2002)

    Google Scholar 

  19. Tapley, D. W., Buettner, G. R. & Shick, J. M. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56 (1999)

    CAS  Article  Google Scholar 

  20. Bennett, J. T. & Turekian, K. K. Radiometric ages of brachyuran crabs from the Galapagos spreading-center hydrothermal ventfield. Limnol. Oceanogr. 29, 1088–1091 (1984)

    ADS  CAS  Article  Google Scholar 

  21. Cronin, T. W., Marshall, N. J., Caldwell, R. L. & Pales, D. Compound eyes and ocular pigments of crustacean larvae (Stomatopoda and Decapoda, Brachyura). Mar. Freshwat. Behav. Physiol. 26, 219–231 (1995)

    Article  Google Scholar 

  22. Stavenga, D. G., Smits, R. P. & Hoenders, B. J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res. 33, 1011–1017 (1993)

    CAS  Article  Google Scholar 

  23. Williams, A. B. A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura). Proc. Biol. Soc. Wash. 93, 443–472 (1980)

    Google Scholar 

Download references


We thank the captain and crew of the RV Atlantis, the DSV Alvin group, and members of the Epifanio laboratory for animal collection. We thank J. J. McDermott for comments on the manuscript. This work was supported by the National Science Foundation (A.I.D., C.E.E. and T.W.C.) and by Franklin and Marshall College.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Robert N. Jinks.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jinks, R., Markley, T., Taylor, E. et al. Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420, 68–70 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing