Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epitaxial core–shell and core–multishell nanowire heterostructures


Semiconductor heterostructures with modulated composition and/or doping enable passivation of interfaces and the generation of devices with diverse functions1. In this regard, the control of interfaces in nanoscale building blocks with high surface area will be increasingly important in the assembly of electronic and photonic devices2,3,4,5,6,7,8,9,10. Core–shell heterostructures formed by the growth of crystalline overlayers on nanocrystals offer enhanced emission efficiency7, important for various applications8,9,10. Axial heterostructures have also been formed by a one-dimensional modulation of nanowire composition11,12,13 and doping11. However, modulation of the radial composition and doping in nanowire structures has received much less attention than planar1 and nanocrystal7 systems. Here we synthesize silicon and germanium core–shell and multishell nanowire heterostructures using a chemical vapour deposition method applicable to a variety of nanoscale materials14. Our investigations of the growth of boron-doped silicon shells on intrinsic silicon and silicon–silicon oxide core–shell nanowires indicate that homoepitaxy can be achieved at relatively low temperatures on clean silicon. We also demonstrate the possibility of heteroepitaxial growth of crystalline germanium–silicon and silicon–germanium core–shell structures, in which band-offsets drive hole injection into either germanium core or shell regions. Our synthesis of core–multishell structures, including a high-performance coaxially gated field-effect transistor, indicates the general potential of radial heterostructure growth for the development of nanowire-based devices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis of core–shell nanowires by chemical vapour deposition.
Figure 2: Si–Si homoepitaxial core–shell nanowires.
Figure 3: Ge–Si core–shell nanowires a, Bright-field image of an unannealed Ge–Si core–shell nanowire with an amorphous p-Si shell.
Figure 4: Si–Ge and Si–Ge–Si core–shell nanowires.
Figure 5: Coaxially-gated nanowire transistors.


  1. Sze, S. M. Physics of Semiconductor Devices (Wiley-Interscience, New York, 1981)

    Google Scholar 

  2. Lieber, C. M. The incredible shrinking circuit. Sci. Am. 285, 58–64 (2001)

    CAS  Article  Google Scholar 

  3. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

    CAS  Article  ADS  Google Scholar 

  4. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

    CAS  Article  ADS  Google Scholar 

  5. Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)

    CAS  Article  ADS  Google Scholar 

  6. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001)

    CAS  Article  ADS  Google Scholar 

  7. Nirmal, M. & Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407–414 (1999)

    CAS  Article  Google Scholar 

  8. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    CAS  Article  ADS  Google Scholar 

  9. Chan, W. C. W. & Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    CAS  Article  ADS  Google Scholar 

  10. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)

    CAS  Article  ADS  Google Scholar 

  11. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002)

    CAS  Article  ADS  Google Scholar 

  12. Bjork, M. T. et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002)

    CAS  Article  ADS  Google Scholar 

  13. Wu, Y. Y., Fan, R. & Yang, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002)

    CAS  Article  ADS  Google Scholar 

  14. Jones, A. C. & O'Brien, P. CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications (VCH, Weinheim, 1997)

    Book  Google Scholar 

  15. Duan, X. F. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000)

    CAS  Article  Google Scholar 

  16. Gudiksen, M. S. & Lieber, C. M. Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122, 8801–8802 (2000)

    CAS  Article  Google Scholar 

  17. Mooney, P. M. & Chu, J. O. SiGe technology: Heteroepitaxy and high-speed microelectronics. Annu. Rev. Mater. Sci. 30, 335–362 (2000)

    CAS  Article  ADS  Google Scholar 

  18. Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001)

    CAS  Article  ADS  Google Scholar 

  19. Briand, D., Sarret, M., Kis-Sion, K., Mohammed-Brahim, T. & Duverneuil, P. In situ doping of silicon deposited by LPCVD: pressure influence on dopant incorporation mechanisms. Semicond. Sci. Technol. 14, 173–180 (1999)

    CAS  Article  ADS  Google Scholar 

  20. Cheng, I. C. & Wagner, S. Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 degrees C. Appl. Phys. Lett. 80, 440–442 (2002)

    CAS  Article  ADS  Google Scholar 

  21. Klaassen, D. B. M. A unified mobility model for device simulation. 1. Model-equations and concentration-dependence. Solid-State Electron. 35, 953–959 (1992)

    CAS  Article  ADS  Google Scholar 

  22. Hull, R.Bean, J. C. (ed.) Germanium Silicon: Physics and Materials (Academic, San Diego, 1999)

  23. Grutzmacher, D. A. et al. Ge segregation in SiGe/Si heterostructures and its dependence on deposition technique and growth atmosphere. Appl. Phys. Lett. 63, 2531–2533 (1993)

    CAS  Article  ADS  Google Scholar 

  24. Wind, S. J., Appenzeller, J., Martel, R., Derycke, V. & Avouris, P. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80, 3817–3819 (2002)

    CAS  Article  ADS  Google Scholar 

  25. Solomon, P. M. Device innovation and material challenges at the limits of CMOS technology. Annu. Rev. Mater. Sci. 30, 681–697 (2000)

    CAS  Article  ADS  Google Scholar 

  26. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    CAS  Article  ADS  Google Scholar 

  27. Gibson, J. M., Lanzerotti, M. Y. & Elser, V. Plan-view transmission electron diffraction measurement of roughness at buried Si/SiO2 interfaces. Appl. Phys. Lett. 55, 1394–1396 (1989)

    CAS  Article  ADS  Google Scholar 

Download references


We thank A. J. Garratt-Reed for assistance with TEM imaging and analysis. M.S.G. thanks the NSF for predoctoral fellowship support. C.M.L. acknowledges support of this work by the Office of Naval Research and Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lauhon, L., Gudiksen, M., Wang, D. et al. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing