Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detecting recent positive selection in the human genome from haplotype structure


The ability to detect recent natural selection in the human population would have profound implications for the study of human history and for medicine. Here, we introduce a framework for detecting the genetic imprint of recent positive selection by analysing long-range haplotypes in human populations. We first identify haplotypes at a locus of interest (core haplotypes). We then assess the age of each core haplotype by the decay of its association to alleles at various distances from the locus, as measured by extended haplotype homozygosity (EHH). Core haplotypes that have unusually high EHH and a high population frequency indicate the presence of a mutation that rose to prominence in the human gene pool faster than expected under neutral evolution. We applied this approach to investigate selection at two genes carrying common variants implicated in resistance to malaria: G6PD1 and CD40 ligand2. At both loci, the core haplotypes carrying the proposed protective mutation stand out and show significant evidence of selection. More generally, the method could be used to scan the entire genome for evidence of recent positive selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design of core and long-range SNPs for G6PD and TNFSF5.
Figure 2: Core haplotype frequency and relative EHH of G6PD and TNFSF5.
Figure 3: Control regions: core haplotype frequency against relative EHH.

Similar content being viewed by others


  1. Ruwende, C. & Hill, A. Glucose-6-phosphate dehydrogenase deficiency and malaria. J. Mol. Med. 76, 581–588 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Sabeti, P. et al. CD40L association with protection from severe malaria. Genes Immun. 3, 286–291 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, 1994)

    MATH  Google Scholar 

  4. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge/New York, 1983)

    Book  Google Scholar 

  5. Stephens, J. C. et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hudson, R. R. & Kaplan, N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewontin, R. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49, 49–67 (1964)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nei, M. Molecular Evolutionary Genetics Eqn. 8.4 (Columbia Univ. Press, New York, 1987)

    Google Scholar 

  9. Luzatto, L., Mehta, A. & Vulliamy, T. The Metabolic & Molecular Bases of Inherited Disease 4517–4553 (McGraw-Hill, New York, 2001)

    Google Scholar 

  10. Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995)

    Article  PubMed  Google Scholar 

  11. Hudson, R. R. Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23, 183–201 (1983)

    Article  CAS  PubMed  Google Scholar 

  12. Reich, D. E. & Goldstein, D. B. Microsatellites: Evolution and Applications 128–138 (Oxford Univ. Press, Oxford/New York, 1999)

    Google Scholar 

  13. Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Rozas, J. & Rozas, R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174–175 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fay, J. C. & Wu, C. I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hughes, A. L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Hudson, R. R., Kreitman, M. & Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 23, 2225–2229 (2002)

    Article  ADS  Google Scholar 

  22. Wootton, J. C. et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Tang, K. et al. Chip-based genotyping by mass spectrometry. Proc. Natl Acad. Sci. USA 96, 10016–10020 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vulliamy, T. J. et al. Linkage disequilibrium of polymorphic sites in the G6PD gene in African populations and the origin of G6PD A. Gene Geogr. 5, 13–21 (1991)

    CAS  PubMed  Google Scholar 

  25. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references


We thank B. Blumenstiel, M. DeFelice, A. Lochner, J. Moore, H. Nguyen and J. Roy for assistance in genotyping the 17 control regions. We also thank L. Gaffney, S. Radhakrishna, T. DiCesare and T. Lavery for graphics and technical support, B. Ferrell for the Beni samples, and A. Adeyemo and C. Rotimi for helping to collect the Yoruba and Shona samples. Finally, we thank M. Daly, E. Cosman, B. Gray, V. Koduri, T. Herrington and L. Peterson for comments on the manuscript. P.C.S. was supported by grants from the Rhodes Trust, the Harvard Office of Enrichment, and by a Soros Fellowship. This work was supported by grants from the National Institute of Health.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eric S. Lander.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabeti, P., Reich, D., Higgins, J. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing