Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans

Abstract

The nematode Caenorhabditis elegans is an important model for studying the genetics of ageing, with over 50 life-extension mutations known so far. However, little is known about the pathobiology of ageing in this species, limiting attempts to connect genotype with senescent phenotype. Using ultrastructural analysis and visualization of specific cell types with green fluorescent protein, we examined cell integrity in different tissues as the animal ages. We report remarkable preservation of the nervous system, even in advanced old age, in contrast to a gradual, progressive deterioration of muscle, resembling human sarcopenia. The age-1(hx546) mutation, which extends lifespan by 60–100%, delayed some, but not all, cellular biomarkers of ageing. Strikingly, we found strong evidence that stochastic as well as genetic factors are significant in C. elegans ageing, with extensive variability both among same-age animals and between cells of the same type within individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioural phenotypes of ageing nematodes indicate progressive decline with stochastic onset and variable rates.
Figure 2: The integrity of the nervous system is maintained in ageing nematodes.
Figure 3: Age-related deterioration of C. elegans body wall muscle.
Figure 4: The long-lived age-1 mutant is not altered in age-related yolk protein redistribution but does exhibit delayed sarcopenia.

Similar content being viewed by others

References

  1. Vanfleteren, J. R. & Braeckman, B. P. Mechanisms of life span determination in Caenorhabditis elegans. Neurobiol. Aging 20, 487–502 (1999)

    Article  CAS  Google Scholar 

  2. Braeckman, B. P., Houthoofd, K. & Vanfleteren, J. R. Insulin-like signaling, metabolism, stress resistance and aging in Caenorhabditis elegans. Mech. Ageing Dev. 122, 673–693 (2001)

    Article  CAS  Google Scholar 

  3. Lithgow, G. J. & Walker, G. A. Stress resistance as a determinate of C. elegans lifespan. Mech. Ageing Dev. 123, 765–771 (2002)

    Article  Google Scholar 

  4. Sulston, J. E. & Horvitz, H. R. Post embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977)

    Article  CAS  Google Scholar 

  5. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    Article  ADS  CAS  Google Scholar 

  6. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977)

    Article  CAS  Google Scholar 

  7. Bolanowski, M. A., Jacobson, L. A. & Russell, R. L. Quantitative measures of aging in the nematode Caenorhabditis elegans. II. Lysosomal hydrolases as markers of senescence. Mech. Ageing Dev. 21, 295–319 (1983)

    Article  CAS  Google Scholar 

  8. Driscoll, M. Cell death in C. elegans: Molecular insights into mechanisms conserved between nematodes and mammals. Brain Pathol. 6, 411–425 (1996)

    Article  CAS  Google Scholar 

  9. Johnson, T. E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 84, 3777–3781 (1987)

    Article  ADS  CAS  Google Scholar 

  10. Hall, D. H. et al. Neuropathology of degenerative cell death in C. elegans. J. Neurosci. 17, 1033–1045 (1997)

    Article  CAS  Google Scholar 

  11. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977–988 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitani, S., Du, H., Hall, D. H., Driscoll, M. & Chalfie, M. Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119, 773–783 (1993)

    CAS  PubMed  Google Scholar 

  13. Colavita, A., Krishna, S., Zheng, H., Padgett, R. W. & Culotti, J. G. Pioneer axon guidance by UNC-129, a C. elegans TGF-β. Science 281, 706–709 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986)

    Article  CAS  Google Scholar 

  16. Campagnola, P. J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Epstein, J., Himmelhoch, S. & Gershon, D. Studies on ageing in nematodes. III. Electron microscopical studies on age-associated cellular damage. Mech. Ageing Dev. 1, 245–255 (1972)

    Article  Google Scholar 

  18. Hall, D. H. et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev. Biol. 212, 101–123 (1999)

    Article  CAS  Google Scholar 

  19. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997)

    Article  CAS  Google Scholar 

  20. Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duhon, S. A. & Johnson, T. E. Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 50, B254–B261 (1995)

    Article  CAS  Google Scholar 

  22. Bolanowski, M. A., Russell, R. L. & Jacobson, L. A. Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech. Ageing Dev. 15, 279–295 (1981)

    Article  CAS  Google Scholar 

  23. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977)

    Article  ADS  CAS  Google Scholar 

  24. Kirkwood, T. B. Human senescence. BioEssays 18, 1009–1016 (1996)

    Article  CAS  Google Scholar 

  25. Kirkwood, T. B. Changing complexity in aging: a metric not an hypothesis. Neurobiol. Aging 23, 21–22 (2002)

    Article  Google Scholar 

  26. Johnson, T. E. et al. Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp. Gerontol. 36, 1609–1617 (2001)

    Article  CAS  Google Scholar 

  27. Finch, C. E. & Kirkwood, T. B. L. Chance, Development, and Aging (Oxford Univ. Press, New York, 2000)

    Google Scholar 

  28. Sozou, P. D. & Kirkwood, T. B. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. J. Theor. Biol. 213, 573–586 (2001)

    Article  CAS  Google Scholar 

  29. Kirkwood, T. B. Evolution of ageing. Mech. Ageing Dev. 123, 737–745 (2002)

    Article  Google Scholar 

  30. Leonard, D. S., Bowman, V. D., Ready, D. F. & Pak, W. L. Degeneration of photoreceptors in rhodopsin mutants of Drosophila. J. Neurobiol. 23, 605–626 (1992)

    Article  CAS  Google Scholar 

  31. Helfand, S. L. & Naprta, B. The expression of a reporter protein, β-galactosidase, is preserved during maturation and aging in some cells of the adult Drosophila melanogaster. Mech. Dev. 55, 45–51 (1996)

    Article  CAS  Google Scholar 

  32. Morrison, J. H. & Hof, P. R. Life and death of neurons in the aging brain. Science 278, 412–419 (1997)

    Article  ADS  CAS  Google Scholar 

  33. Jucker, M., Bondolfi, L., Calhoun, M. E., Long, J. M. & Ingram, D. K. Structural brain aging in inbred mice: potential for genetic linkage. Exp. Gerontol. 35, 1383–1388 (2000)

    Article  CAS  Google Scholar 

  34. Waterston, R. H. The Nematode: Caenorhabditis elegans (ed. Wood, W. B.) 281–337 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988)

    Google Scholar 

  35. Hughes, S. M. & Schiaffino, S. Control of muscle fibre size: a crucial factor in ageing. Acta Physiol. Scand. 167, 307–312 (1999)

    Article  CAS  Google Scholar 

  36. Fujisawa, K. Some observations on the skeletal musculature of aged rats. Part 2. Fine morphology of diseased muscle fibres. J. Neurol. Sci. 24, 447–469 (1975)

    Article  CAS  Google Scholar 

  37. Takahashi, A., Philpott, D. E. & Miquel, J. Electron microscope studies on aging Drosophila melanogaster. 3. Flight muscle. J. Gerontol. 25, 222–228 (1970)

    Article  CAS  Google Scholar 

  38. Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502–505 (2002)

    Article  ADS  CAS  Google Scholar 

  39. Garigan, D. et al. Genetic analysis of tissue aging in Caenorhabditis elegans. A role for heat-shock factor and bacterial proliferation. Genetics 161, 1101–1112 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science 290, 147–150 (2000)

    Article  ADS  CAS  Google Scholar 

  41. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999)

    Article  ADS  CAS  Google Scholar 

  42. Lund, J. et al. Global profiles of aging in Caenorhabditis elegans. Curr. Biol. 12, 1566–1573 (2002)

    Article  CAS  Google Scholar 

  43. Johnson, T. E. & McCaffrey, G. Programmed aging or error catastrophe? An examination by two-dimensional polyacrylamide gel electrophoresis. Mech. Ageing Dev. 30, 285–297 (1985)

    Article  CAS  Google Scholar 

  44. Rogina, B., Vaupel, J. W., Partridge, L. & Helfand, S. L. Regulation of gene expression is preserved in aging Drosophila melanogaster. Curr. Biol. 8, 475–478 (1998)

    Article  CAS  Google Scholar 

  45. Lewis, J. A. & Fleming, J. T. Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds Epstein, H. F. & Shakes, D. C.) 4–27 (Academic, San Diego, 1995)

    Google Scholar 

  46. Hall, D. H. Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol. 48, 395–436 (1995)

    Article  CAS  Google Scholar 

  47. Paupard, M. C., Miller, A., Grant, B., Hirsh, D. & Hall, D. H. Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J. Histochem. Cytochem. 49, 949–956 (2001)

    Article  CAS  Google Scholar 

  48. Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following people for providing the following strains used in this study: B. Wadsworth for IM175, S. Clark for ZB154, R. Padgett for NW1099, A. Fire for PD4251, P. Hoppe and B. Waterston for RW1596, B. Grant for DH1033, I. Johnstone for IA019, E. Jorgensen for EG1653, and J. Plenefisch for rhIs2. We also thank the Caenorhabditis Genetics Center funded by NIH NCRR for the TJ1052 and BE13 strains. We thank G. Stephney, T. Stephney and K. Nguyen for help with electron microscopy; B. Levine and A. Melendez for helpful discussions about autophagy in C. elegans; G. Patterson and B. Grant for critical reading of this manuscript; and T. Johnson and D. Wu for advice about the analysis of behavioural class as a predictor of life expectancy. This work was supported by grants from the National Institute of Neurological Disorders and Stroke and the National Institute on Aging to M.D., and the Center for C. elegans Anatomy was supported by a grant from the NIH Division of Research Resources to D.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David H. Hall or Monica Driscoll.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herndon, L., Schmeissner, P., Dudaronek, J. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002). https://doi.org/10.1038/nature01135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01135

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing