Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High tensile ductility in a nanostructured metal

Abstract

Nanocrystalline metals—with grain sizes of less than 100 nm—have strengths exceeding those of coarse-grained and even alloyed metals1,2, and are thus expected to have many applications. For example, pure nanocrystalline Cu (refs 1–7) has a yield strength in excess of 400 MPa, which is six times higher than that of coarse-grained Cu. But nanocrystalline materials often exhibit low tensile ductility at room temperature, which limits their practical utility. The elongation to failure is typically less than a few per cent; the regime of uniform deformation is even smaller1,2,3,4,5,6,7. Here we describe a thermomechanical treatment of Cu that results in a bimodal grain size distribution, with micrometre-sized grains embedded inside a matrix of nanocrystalline and ultrafine (<300 nm) grains. The matrix grains impart high strength, as expected from an extrapolation of the Hall–Petch relationship. Meanwhile, the inhomogeneous microstructure induces strain hardening mechanisms8,9,10,11 that stabilize the tensile deformation, leading to a high tensile ductility—65% elongation to failure, and 30% uniform elongation. We expect that these results will have implications in the development of tough nanostructured metals for forming operations and high-performance structural applications including microelectromechanical and biomedical systems.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Engineering stress–strain curves for pure Cu.
Figure 2: Representative tensile properties of pure Cu.
Figure 3: Transmission electron micrographs showing the evolution of the Cu microstructure.
Figure 4: Transmission electron micrographs of Cu after different tensile strains.

References

  1. Koch, C. C., Morris, D. G., Lu, K. & Inoue, A. Ductility of nanostructured materials. Mater. Res. Soc. Bull. 24, 54–58 (1999)

    CAS  Article  Google Scholar 

  2. Weertman, J. R. et al. Structure and mechanical behavior of bulk nanocrystalline materials. Mater. Res. Soc. Bull. 24, 44–50 (1999)

    CAS  Article  Google Scholar 

  3. Sanders, P. G., Youngdahl, C. J. & Weertman, J. R. The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng. A 234–236, 77–82 (1997)

    Article  Google Scholar 

  4. Sanders, P. G., Eastman, J. A. & Weertman, J. R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019–4025 (1997)

    CAS  Article  Google Scholar 

  5. Lergos, M., Elliott, B. R., Rittner, M. N., Weertman, J. R. & Hemker, K. J. Microsample tensile testing of nanocrystalline metals. Phil. Mag. A 80, 1017–1026 (2000)

    ADS  Article  Google Scholar 

  6. Valiev, R. Z., Alexandrov, I. V., Zhu, Y. T. & Lowe, T. C. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5–8 (2002)

    ADS  CAS  Article  Google Scholar 

  7. Gertsman, V. Y., Valiev, R. Z., Akhmadeev, N. A. & Mishin, O. V. Deformation behavior of ultrafine-grained materials. Mater. Sci. Forum 225–227, 739–744 (1996)

    Article  Google Scholar 

  8. Asgari, S., El-Danaf, E., Kalidindi, S. R. & Doherty, R. D. Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall. Mater. Trans. A 28, 1781–1795 (1997)

    Article  Google Scholar 

  9. Andrade, U., Meyers, M. A., Vecchio, K. S. & Chokshi, A. H. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall. Mater. 42, 3183–3195 (1994)

    CAS  Article  Google Scholar 

  10. Youngdahl, C. J., Weertman, J. R., Hugo, R. C. & Kung, H. H. Deformation behavior in nanocrystalline copper. Scripta Mater. 44, 1475–1478 (2001)

    CAS  Article  Google Scholar 

  11. Gao, H., Huang, Y., Nix, W. D. & Hutchinson, J. W. Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  12. Lu, L., Wang, L. B., Ding, B. Z. & Lu, K. High-tensile ductility in nanocrystalline copper. J. Mater. Res. 15, 270–273 (2000)

    ADS  CAS  Article  Google Scholar 

  13. Hughes, D. A. & Hansen, N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 45, 3871–3886 (1997)

    CAS  Article  Google Scholar 

  14. Wang, Y. M., Ma, E. & Chen, M. W. Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80, 2395–2397 (2002)

    ADS  CAS  Article  Google Scholar 

  15. Humphreys, F. J. & Hatherly, M. Recrystallization and Related Annealing Phenomena, 1st edn 314 (Pergamon, New York, 1995)

    Google Scholar 

  16. Hertzberg, R. W. Deformation and Fracture Mechanics of Engineering Materials, 3rd edn 89, 392 (Wiley and Sons, New York, 1989)

    Google Scholar 

  17. Hart, E. W. Theory of the tensile test. Acta Metall. 15, 351–355 (1967)

    CAS  Article  Google Scholar 

  18. Dieter, G. E. Mechanical Metallurgy, 3rd edn 290 (McGraw-Hill, Boston, 1986)

    Google Scholar 

  19. Jia, D. et al. Deformation behavior and plastic instabilities in ultrafine-grained Ti. Appl. Phys. Lett. 79, 611–613 (2001)

    ADS  CAS  Article  Google Scholar 

  20. Wang, Y. M. & Ma, E. Strain hardening, strain rate sensitivity, and ductility of nanoconstructed metals. Mater. Sci. Eng. A (in the press)

  21. Valiev, R. Z., Islamgaliev, R. K. & Alexandrov, I. V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000)

    CAS  Article  Google Scholar 

  22. Huang, J. Y., Wu, Y. K. & Ye, H. Q. Deformation structures in ball milled copper. Acta Mater. 44, 1211–1221 (1996)

    CAS  Article  Google Scholar 

  23. Blewitt, T. H., Coltman, R. R. & Redman, J. K. Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651–660 (1957)

    ADS  CAS  Article  Google Scholar 

  24. Lu, L., Sui, M. L. & Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463–1465 (2000)

    ADS  CAS  Article  Google Scholar 

  25. McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P. & Mukerjee, A. K. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684–686 (1999)

    ADS  CAS  Article  Google Scholar 

  26. McFadden, S. X., Zhilyaev, A. P., Mishra, R. S. & Mukerjee, A. K. Observation of low-temperature superplasticity in electroplated ultrafine grained nickel. Mater. Lett. 45, 345–349 (2000)

    CAS  Article  Google Scholar 

  27. Hibbard, G. D., McCrea, J. L., Palumbo, G., Aust, K. T. & Erb, U. An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scripta Mater. 47, 83–87 (2002)

    CAS  Article  Google Scholar 

  28. Wei, Q. M., Jia, D., Ramesh, K. T. & Ma, E. Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240–1242 (2002)

    ADS  CAS  Article  Google Scholar 

  29. Callister, W. D. Jr. Materials Science and Engineering, 3rd edn 167 (Wiley and Sons, New York, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank G. Xu, H. Gao, S. X. Mao and D. van Heerden for discussions. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Ma.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Chen, M., Zhou, F. et al. High tensile ductility in a nanostructured metal. Nature 419, 912–915 (2002). https://doi.org/10.1038/nature01133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01133

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing