Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature

An Erratum to this article was published on 12 December 2002

Abstract

The Earth's lower mantle consists mainly of (Mg,Fe)SiO3 perovskite and (Mg,Fe)O magnesiowüstite, with the perovskite taking up at least 70 per cent of the total volume1. Although the rheology of olivine, the dominant upper-mantle mineral, has been extensively studied, knowledge about the rheological behaviour of perovskite is limited. Seismological studies indicate that slabs of subducting oceanic lithosphere are often deflected horizontally at the perovskite-forming depth, and changes in the Earth's shape and gravity field during glacial rebound indicate that viscosity increases in the lower part of the mantle. The rheological properties of the perovskite may be important in governing these phenomena. But (Mg,Fe)SiO3 perovskite is not stable at high temperatures under ambient pressure, and therefore mechanical tests on (Mg,Fe)SiO3 perovskite are difficult. Most rheological studies of perovskite have been performed on analogous materials2,3,4,5,6,7, and the experimental data on (Mg,Fe)SiO3 perovskite are limited to strength measurements at room temperature in a diamond-anvil cell8 and microhardness tests at ambient conditions9. Here we report results of strength and stress relaxation measurements of (Mg0.9Fe0.1)SiO3 perovskite at high pressure and temperature. Compared with the transition-zone mineral ringwoodite10 at the same pressure and temperature, we found that perovskite is weaker at room temperature, which is consistent with a previous diamond-anvil-cell experiment8, but that perovskite is stronger than ringwoodite at high temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential stress supported by Mg0.9Fe0.1SiO3 perovskite and Mg2SiO4 spinel as a function of time at several constant temperatures under 20-GPa confining pressure.
Figure 2: Change in the relative intensities of the (020) and (200) diffraction peaks of Mg0.9Fe0.1SiO3 perovskite owing to compression.

Similar content being viewed by others

References

  1. Anderson, D. L. & Bass, J. D. Transition region of the Earth's upper mantle. Nature 320, 321–328 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Poirier, J. P., Peyronneau, J., Gesland, J. Y. & Brebec, G. Viscosity and conductivity of the lower mantle: an experimental study on a MgSiO3 perovskite analogue, KZnF3 . Phys. Earth Planet. Inter. 32, 273–287 (1983)

    Article  ADS  CAS  Google Scholar 

  3. Doukhan, N. & Doukhan, J. C. Dislocation in perovskite BaTiO3 and CaTiO3 . Phys. Chem. Miner. 13, 403–410 (1986)

    ADS  CAS  Google Scholar 

  4. Karato, S.-i. Plasticity-crystal structure systematics in dense oxides and its implications for the creep strength of the Earth's deep interior: a preliminary result. Phys. Earth Planet. Inter. 55, 234–240 (1989)

    Article  ADS  CAS  Google Scholar 

  5. Karato, S.-i. & Li, P. Diffusion creep in perovskite: implications for the rheology of the lower mantle. Science 255, 1238–1240 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Li, P., Karato, S.-i. & Wang, Z. High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg,Fe)SiO3 perovskite. Phys. Earth Planet. Inter. 95, 19–36 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Wright, K., Price, G. D. & Poirier, J. P. High-temperature creep of the perovskite CaTiO3 and NaNbO3 . Phys. Earth Planet. Inter. 74, 9–22 (1992)

    Article  ADS  CAS  Google Scholar 

  8. Meade, C. & Jeanloz, R. The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature 348, 533–535 (1990)

    Article  ADS  CAS  Google Scholar 

  9. Karato, S.-i., Fujino, K. & Ito, E. Plasticity of MgSiO3 perovskite: the results of microhardness tests on single crystals. Geophys. Res. Lett. 17, 13–16 (1990)

    Article  ADS  Google Scholar 

  10. Chen, J., Inoue, T., Weidner, D., Wu, Y. & Vaughan, M. Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophys. Res. Lett. 25, 575–578 1103–1104 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Weidner, D. J., et al. High-pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 13–17 (Terra Scientific/AGU, Tokyo/Washington DC, 1992)

    Google Scholar 

  12. Weidner, D. J., Wang, Y. & Vaughan, M. T. Yield strength at high pressure and temperature. Geophys. Res. Lett. 21, 753–756 (1994)

    Article  ADS  Google Scholar 

  13. Weidner, D. J., Wang, Y., Chen, G., Ando, J. & Vaughan, M. T. Properties of Earth and Planetary Materials at High Pressure and Temperature (eds Manghnani, M. H. & Yagi, T.) 473–482 (Geophysical Monograph, AGU, Washington DC, 1998)

    Book  Google Scholar 

  14. Decker, D. L. High-pressure equation of state for NaCl, KCl and CsCl. J. Appl. Phys. 42, 3239–3244 (1971)

    Article  ADS  CAS  Google Scholar 

  15. Gerward, L., Morup, S. & Topsoe, H. Particle size and strain broadening in energy-dispersive x-ray powder patterns. J. Appl. Phys. 47, 822–825 (1976)

    Article  ADS  Google Scholar 

  16. Frost, H. J. & Ashby, M. F. Deformation-Mechanism Maps (Pergamon, Oxford, 1982)

    Google Scholar 

  17. Wang, Y., Guyot, F., Yeganeh-Haeri, A. & Liebermann, R. C. Twinning in MgSiO3 perovskite. Science 248, 468–471 (1990)

    Article  ADS  CAS  Google Scholar 

  18. Sapriel, J. Domain-wall orientations in ferroelastics. Phys. Rev. B 12, 5128–5140 (1975)

    Article  ADS  CAS  Google Scholar 

  19. Toledano, J. C. & Toledano, P. Order parameter symmetries and free-energy expansions for purely ferroelastic transitions. Phys. Rev. B 21, 1139–1172 (1980)

    Article  ADS  CAS  Google Scholar 

  20. Zhao, Y. et al. High-pressure crystal chemistry of neighborite, NaMgF3: An angle-dispersive diffraction study using monochromatic synchrotron x-radiation. Am. Mineral. 79, 615–621 (1994)

    CAS  Google Scholar 

  21. Avé Lallemant, H. G. Experimental deformation of diopside and websterite. Tectonophysics 48, 1–27 (1978)

    Article  ADS  Google Scholar 

  22. Derby, B. Deformation Processes in Minerals, Ceramics and Rocks (eds Barber, D. J. and Meredith, P. G.) 354–364 (Unwin Hyman, London, 1990)

    Book  Google Scholar 

  23. Shimuzu, I. Stress and temperature dependence of recrystallized grain size: A subgrain misorientation model. Geophys. Res. Lett. 25, 4237–4240 (1998)

    Article  ADS  Google Scholar 

  24. Gurnis, M. & Hager, B. H. Controls of the structure of subducted slabs. Nature 335, 317–321 (1988)

    Article  ADS  Google Scholar 

  25. Karato, S.-i., Riedel, M. R. & Yuen, D. A. Rheological structure and deformation of subducted slabs in the mantle transition zone; implications for mantle circulation and deep earthquakes. Physics Earth Planet. Inter. 127, 83–108 (2001)

    Article  ADS  Google Scholar 

  26. Griggs, D. T. & Baker, D. W. Properties of Matter Under Unusual Conditions (eds Mark, H. & Fernbach, S.) 23–42 (Wiley/Interscience, New York, 1969)

    Google Scholar 

  27. Ogawa, M. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. J. Geophys. Res. 92, 13801–13810 (1987)

    Article  ADS  Google Scholar 

  28. Weidner, D. J. et al. Subduction zone rheology. Phys. Earth Planet. Inter. 127, 67–81 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out at the X17B beamline of the National Synchrotron Light Source. We thank Z. Zhang, J. B. Hastings and D. P. Siddons for technical support at the beamline, and J. Zhang for help in sample preparation. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuhua Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Weidner, D. & Vaughan, M. The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419, 824–826 (2002). https://doi.org/10.1038/nature01130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01130

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing