Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Linearly concatenated cyclobutane lipids form a dense bacterial membrane

Abstract

Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings1,2,3, but four-membered aliphatic cyclobutane rings have never been observed. Here we report the discovery of cyclobutane rings in the dominant membrane lipids of two anaerobic ammonium-oxidizing (anammox) bacteria. These lipids contain up to five linearly fused cyclobutane moieties with cis ring junctions. Such ‘ladderane’ molecules are unprecedented in nature but are known as promising building blocks in optoelectronics4. The ladderane lipids occur in the membrane of the anammoxosome, the dedicated intracytoplasmic compartment where anammox catabolism takes place. They give rise to an exceptionally dense membrane, a tight barrier against diffusion. We propose that such a membrane is required to maintain concentration gradients during the exceptionally slow anammox metabolism and to protect the remainder of the cell from the toxic anammox intermediates. Our results further illustrate that microbial membrane lipid structures are far more diverse than previously recognized5,6,7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of the anammox ladderane membrane lipids.
Figure 2: Model of the anammox cell and its anammoxosome membrane.
Figure 3: Microscopy of anammoxosomes.

References

  1. 1

    Grogan, D. W. et al. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61, 446–449 (1997)

    Google Scholar 

  2. 2

    DeRosa, M. & Gambacorta, A. The lipids of archaebacteria. Prog. Lipid Res. 27, 153–175 (1988)

    CAS  Article  Google Scholar 

  3. 3

    Wisotzkey, J. D., Jurtshuk, P. Jr, Fox, G. E., Deinhard, G. & Poralla, K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 42, 263–269 (1992)

    CAS  Article  Google Scholar 

  4. 4

    Li, W. & Fox, M. A. Syntheses, characterization, and photophysics studies of photoactive chromophore 2-naphthyl-labelled [n]-ladderanes. J. Am. Chem. Soc. 118, 11752–11758 (1996)

    CAS  Article  Google Scholar 

  5. 5

    Schouten, S., Hopmans, E. C., Pancost, R. D. & Sinninghe Damsté, J. S. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc. Natl Acad. Sci. USA 97, 14421–14426 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Pancost, R. D., Bouloubassi, I., Aloisi, V., Sinninghe Damsté, J. S. & the MEDINAUT Shipboard Scientific Party Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org. Geochem. 32, 695–707 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S. & Geenevasen, J. A. J. Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids in sediments. J. Chem. Soc. Chem. Commun. 1683–1684 (2000)

  8. 8

    Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Schmid, M. et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93–106 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Egli, K. et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175, 198–207 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 413–429 (2001)

    CAS  Article  Google Scholar 

  12. 12

    van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M. & Kuenen, J. G. Metabolic pathway of anaerobic ammonium oxidation on basis of 15N-studies in a fluidized bed reactor. Microbiology 143, 2415–2421 (1997)

    CAS  Article  Google Scholar 

  13. 13

    Olsen, G. J. What's eating the free lunch? Nature 400, 403–404 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Miller, M. A. & Schulman, J. M. AM1, MNDO and MM2 studies on concatenated cyclobutanes: Prismans, ladderanes and asteranes. J. Mol. Struct. 163, 133–141 (1988)

    Article  Google Scholar 

  15. 15

    Sittig, M. & Schlesner, H. Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst. Appl. Microbiol. 16, 92–103 (1993)

    CAS  Article  Google Scholar 

  16. 16

    Van de Graaf, A. A. et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142, 2187–2196 (1996)

    CAS  Article  Google Scholar 

  17. 17

    Langworthy, T. A. & Pond, J. L. Archaebacterial ether lipids and chemotaxonomy. Syst. Appl. Microbiol. 7, 253–257 (1986)

    CAS  Article  Google Scholar 

  18. 18

    Langworthy, T. A., Holzer, G., Zeikus, J. G. & Tornabene, T. G. Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfobacterium commune. System. Appl. Microbiol. 4, 1–17 (1983)

    CAS  Article  Google Scholar 

  19. 19

    Huber, R. et al. Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst. Appl. Microbiol. 19, 40–49 (1996)

    CAS  Article  Google Scholar 

  20. 20

    Huber, R. et al. Aquifex pyrophilus, new genus new species, represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340–351 (1992)

    Article  Google Scholar 

  21. 21

    DeRosa, M., et al. Microbiology of Extreme Environments and its Potential for Biotechnology (eds Da Costa, M. S., Duarte, J. C. & Williams, R. A. D.) 167–173 (Elsevier, London, 1989)

    Google Scholar 

  22. 22

    Van den Vossenberg, J. C. M., Driessen, A. J. M. & Konings, W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163–170 (1998)

    Article  Google Scholar 

  23. 23

    Rütters, H., Sass, H., Cypionka, H. & Rullkötter, J. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch. Microbiol. 176, 435–442 (2001)

    Article  Google Scholar 

  24. 24

    Mehta, G. et al. Quest for higher ladderanes: Oligomerization of a cyclobutadiene derivative. Angew. Chem. Int. Ed. 31, 1488–1490 (1992)

    Article  Google Scholar 

  25. 25

    Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998)

    CAS  Article  Google Scholar 

  26. 26

    Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Schalk, J., de Vries, S., Kuenen, J. G. & Jetten, M. S. M. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39, 5405–5412 (2000)

    CAS  Article  Google Scholar 

  28. 28

    van Duin, A. C. T. & Larter, S. A computational chemical study of penetration and displacement of water films near mineral surfaces. Geochem. Trans. 006 (2001)

  29. 29

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. G. Kuenen, H. Hiemstra, S. Schouten and W. Konings for stimulating discussions, C. Erkelens (University of Leiden) for access to the 600- and 750-MHz NMR instruments, J. A. Fuerst for cells of Gemmata obscuriglobus and Pirellula sp. and training of L.A.v.N., M. Wolters-Arts for help with electron microscopy, and K. T. van de Pas-Schoonen for help with immunofluorescence.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaap S. Sinninghe Damsté.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinninghe Damsté, J., Strous, M., Rijpstra, W. et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419, 708–712 (2002). https://doi.org/10.1038/nature01128

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing