Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The F-box protein Slimb controls the levels of clock proteins Period and Timeless

Abstract

The Drosophila circadian clock is driven by daily fluctuations of the proteins Period and Timeless, which associate in a complex and negatively regulate the transcription of their own genes1,2. Protein phosphorylation has a central role in this feedback loop, by controlling Per stability in both cytoplasmic and nuclear compartments3,4,5,6 as well as Per/Tim nuclear transfer7,8. However, the pathways regulating degradation of phosphorylated Per and Tim are unknown. Here we show that the product of the slimb (slmb) gene9—a member of the F-box/WD40 protein family of the ubiquitin ligase SCF complex that targets phosphorylated proteins for degradation10,11,12,13—is an essential component of the Drosophila circadian clock. slmb mutants are behaviourally arrhythmic, and can be rescued by targeted expression of Slmb in the clock neurons. In constant darkness, highly phosphorylated forms of the Per and Tim proteins are constitutively present in the mutants, indicating that the control of their cyclic degradation is impaired. Because levels of Per and Tim oscillate in slmb mutants maintained in light:dark conditions, light- and clock-controlled degradation of Per and Tim do not rely on the same mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locomotor activity in LD cycles.
Figure 2: Per and Tim proteins and RNAs in slmbm mutants.
Figure 3: Slmb protein expression and interactions.

Similar content being viewed by others

References

  1. Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–1119 (2001)

    Article  CAS  Google Scholar 

  2. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001)

    Article  CAS  Google Scholar 

  3. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94, 97–107 (1998)

    Article  CAS  Google Scholar 

  4. Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998)

    Article  CAS  Google Scholar 

  5. Suri, V., Hall, J. C. & Rosbash, M. Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila. J. Neurosci. 20, 7547–7555 (2000)

    Article  CAS  Google Scholar 

  6. Kloss, B., Rothenfluh, A., Young, M. W. & Saez, L. Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron 30, 699–706 (2001)

    Article  CAS  Google Scholar 

  7. Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A Role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779 (2001)

    Article  CAS  Google Scholar 

  8. Curtin, K. D., Huang, Z. J. & Rosbash, M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14, 365–372 (1995)

    Article  CAS  Google Scholar 

  9. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Skowyra, D., Craig, K. L., Tyres, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997)

    Article  CAS  Google Scholar 

  11. Margottin, F. et al. A novel human WD protein, h-β TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998)

    Article  CAS  Google Scholar 

  12. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999)

    Article  CAS  Google Scholar 

  13. Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999)

    Article  CAS  Google Scholar 

  14. Miletich, I. & Limbourg-Bouchon, B. Drosophila null slimb clones transiently deregulate Hedgehog-independent transcription of wingless in all limb discs, and induce decapentaplegic transcription linked to imaginal disc regeneration. Mech. Dev. 93, 15–26 (2000)

    Article  CAS  Google Scholar 

  15. Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802 (1999)

    Article  CAS  Google Scholar 

  16. Blanchardon, E. et al. Defining the role of Drosophila lateral neurons in the control of circadian activity and eclosion rhythms by targeted genetic ablation and PERIOD protein overexpression. Eur. J. Neurosci. 13, 871–888 (2001)

    Article  CAS  Google Scholar 

  17. Edery, I., Zwiebel, L. J., Dembinska, M. E. & Rosbash, M. Temporal phosphorylation of the Drosophila period protein. Proc. Natl Acad. Sci. USA 91, 2260–2264 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Myers, M. P., Wager-Smith, K., Rothenfluh-Hilfiker, A. & Young, M. W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271, 1736–1740 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Zeng, H. K., Qian, Z. W., Myers, M. P. & Rosbash, M. A light-entrainment mechanism for the Drosophila circadian clock. Nature 380, 129–135 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Kaneko, M., Park, J. H., Cheng, Y., Hardin, P. E. & Hall, J. C. Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J. Neurobiol. 43, 207–233 (2000)

    Article  CAS  Google Scholar 

  21. Yang, Z. & Sehgal, A. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29, 453–467 (2001)

    Article  CAS  Google Scholar 

  22. Hunter-Ensor, M., Ousley, A. & Sehgal, A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677–685 (1996)

    Article  CAS  Google Scholar 

  23. Lee, C. G., Parikh, V., Itsukaichi, T., Bae, K. & Edery, I. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 271, 1740–1744 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Naidoo, N., Song, W., Hunter-Ensor, M. & Sehgal, A. A role for the proteasome in the light response of the Timeless clock protein. Science 285, 1737–1741 (1999)

    Article  CAS  Google Scholar 

  25. Price, M. A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108, 823–835 (2002)

    Article  CAS  Google Scholar 

  26. Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416, 548–552 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Pai, L. M., Orsulic, S., Bejsovec, A. & Peifer, M. Negative regulation of Armadillo, a Wingless effector in Drosophila. Development 124, 2255–2266 (1997)

    CAS  PubMed  Google Scholar 

  28. Stanewsky, R. et al. Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: Mapping elements of the PER protein involved in circadian cycling. J. Neurosci. 17, 676–696 (1997)

    Article  CAS  Google Scholar 

  29. Ruel, L., Pantesco, V., Lutz, Y., Simpson, P. & Bourouis, M. Functional significance of a family of protein kinases encoded at the shaggy locus in Drosophila. EMBO J. 12, 1657–1669 (1993)

    Article  CAS  Google Scholar 

  30. Cegielska, A., Gietzen, K. F., Rivers, A. & Virshup, D. M. Autoinhibition of casein kinase I ε (CKI ε) is relieved by protein phosphatases and limited proteolysis. J. Biol. Chem. 273, 1357–1364 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Boudinot for the Faas software, M. Serrier and L. Collet for help with the figures, M. Rosbash, P. Emery, A. Klarsfeld, J.-F. Julien and E. Petrochilo for their comments and suggestions on the manuscript, as well as J. Champagnat and J.-D. Vincent for their continuous support. We thank I. Miletich for the unpublished UAS-slmb line, and R. Myers, L. Saez, R. Stanewsky and D. Virshup for providing antibodies or constructs. This work was supported by CNRS (ATIPE “Développement” and appel d'offres “Biologie cellulaire”) and Fondation pour la Recherche Médicale. F.R. is supported by INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Rouyer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grima, B., Lamouroux, A., Chélot, E. et al. The F-box protein Slimb controls the levels of clock proteins Period and Timeless. Nature 420, 178–182 (2002). https://doi.org/10.1038/nature01122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01122

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing