Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Propagation of the polyamorphic transition of ice and the liquid–liquid critical point

Abstract

Water has a rich metastable phase behaviour that includes transitions between high- and low-density amorphous ices, and between high- and low-density supercooled liquids. Because the transitions occur under conditions where crystalline ice is the stable phase, they are challenging to probe directly. In the case of the liquids, it remains unclear1 whether their mutual transformation at low temperatures is continuous2,3, or discontinuous4,5 and terminating at a postulated second critical point of water that is metastable with respect to crystallization. The amorphous ices are more amenable to experiments6,7,8, which have shown that their mutual transformation is sharp and reversible. But the non-equilibrium conditions of these studies make a firm thermodynamic interpretation of the results difficult. Here we use Raman spectroscopy and visual inspection to show that the transformation of high-density to low-density amorphous ices involves the propagation of a phase boundary—a region containing a mixture of both ices. We find that the boundary region becomes narrower as the transformation progresses, and at higher transformation temperatures. These findings strongly suggest that the polyamorphic ice transition is discontinuous; a continuous transformation should occur uniformly over the entire sample9. Because the amorphous ices are structurally similar to their supercooled liquid counterparts, our results also imply that the liquids transform discontinuously at low temperatures and thus support the liquid–liquid critical-point theory4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in the Raman spectrum of a high-density amorphous ice sample during annealing at different temperatures Tanneal.
Figure 2: Changes in properties of Raman spectra induced by annealing of amorphous ice at different temperatures.
Figure 3: The transformation of HDA to LDA as a function of time.
Figure 4: Raman spectra of an intermediate state at 25 K.
Figure 5: Phase changes in an amorphous sample at 111 K.
Figure 6: Visual observations of the transformations at 115, 123 and 128 K.

Similar content being viewed by others

References

  1. Debenedetti, P. G. One substance, two liquids? Nature 392, 127–129 (1998)

    Article  ADS  Google Scholar 

  2. Sastry, S., Debenedetti, P. G., Sciortino, F. & Stanley, H. E. Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E 53, 6144–6154 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Rebelo, L. P. N., Debenedetti, P. G. & Sastry, S. Singularity-free interpretation of the thermodynamics of supercooled water. II. Thermal and volumetric behavior. J. Chem. Phys. 109, 626–633 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Franzese, G. & Stanley, H. E. Liquid-liquid critical point in a Hamiltonian model for water: analytic solution. J. Phys. Condens. Matter 14, 2201–2209 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Floriano, M. A., Handa, Y. P., Klug, D. D. & Whalley, E. Nature of the transformations of ice I and low-density amorphous ice to high-density amorphous ice. J. Chem. Phys. 91, 7187–7192 (1989)

    Article  ADS  CAS  Google Scholar 

  7. Mishima, O., Takemura, K. & Aoki, K. Visual observations of the amorphous-amorphous transition in H2O under pressure. Science 254, 406–408 (1991)

    Article  ADS  CAS  Google Scholar 

  8. Mishima, O. Reversible first-order transition between two water amorphs at 0.2 GPa and 135 K. J. Chem. Phys. 100, 5910–5912 (1994)

    Article  ADS  CAS  Google Scholar 

  9. Moynihan, C. T. Ann. NY Acad. Sci. 484, 94 (1986); 484, 287 (1986)

    Google Scholar 

  10. Mishima, O. Relationship between melting and amorphization of ice. Nature 384, 546–549 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Suzuki, Y., Takasaki, Y., Tominaga, Y. & Mishima, O. Low-frequency Raman spectra of amorphous ices. Chem. Phys. Lett. 319, 81–84 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Loerting, T. et al. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 3, 5355–5357 (2001)

    Article  CAS  Google Scholar 

  13. Klug, D. D., Mishima, O. & Whalley, E. Raman spectrum of high-density amorphous ice. Physica B 139 & 140, 475–478 (1986)

    Article  Google Scholar 

  14. Tulk, C. A. et al. Structural studies of several distinct metastable forms of amorphous ice. Science 297, 1320–1323 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Sivakumar, T. C., Schuh, D., Sceats, M. G. & Rice, S. A. The 2500–4000 cm-1 Raman and infrared spectra of low density amorphous solid water and of polycrystalline ice I. Chem. Phys. Lett. 48, 212–218 (1977)

    Article  ADS  CAS  Google Scholar 

  16. Handa, Y. P., Mishima, O. & Whalley, E. High-density amorphous ice. III. Thermal properties. J. Chem. Phys. 84, 2766–2770 (1986)

    Article  ADS  CAS  Google Scholar 

  17. Klug, D. D., Mishima, O. & Whalley, E. High-density amorphous ice. IV. Raman-spectrum of the uncoupled O-H and O-D oscillators. J. Chem. Phys. 86, 5323–5328 (1987)

    Article  ADS  CAS  Google Scholar 

  18. Gromitskaya, E. L., Stal'gorova, O. V., Brazhkin, V. V. & Lyapin, A. G. Ultrasonic study of the nonequilibrium pressure-temperature diagram of H2O ice. Phys. Rev. B 64, 094205 (2001)

    Article  ADS  Google Scholar 

  19. Mishima, O. & Suzuki, Y. Vitrification of emulsified liquid water under pressure. J. Chem. Phys. 115, 4199–4202 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Balagurov, A. M. et al. Neutron-diffraction study of phase-transitions of high-pressure metastable ice-VIII. JETP Lett. 53, 30–34 (1991)

    ADS  CAS  Google Scholar 

  21. Poole, P. H. et al. Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett. 73, 1632–1635 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Truskett, T. M., Debenedetti, P. G. & Sastry, S. A single-bond approach to orientation-dependent interactions and its implications for liquid water. J. Chem. Phys. 111, 2647–2656 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Debenedetti, P. G. Metastable Liquids (Princeton Univ. Press, 1996)

    Google Scholar 

  24. Floriano, M. A., Whalley, E., Svensson, E. C. & Sears, V. F. Structure of high-density amorphous ice by neutron diffraction. Phys. Rev. Lett. 57, 3062–3064 (1986)

    Article  ADS  CAS  Google Scholar 

  25. Bellissent-Funel, M.-C. & Bosio, L. A neutron scattering study of liquid D2O under pressure and at various temperatures. J. Chem. Phys. 102, 3727–3735 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Soper, A. K. & Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Finney, J. L. et al. Structures of high and low density amorphous ice by neutron diffraction. Phys. Rev. Lett. 88, 225503 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Aasland, S. & McMillan, P. F. Density-driven liquid–liquid phase separation in the system Al2O3–Y2O3 . Nature 369, 633–636 (1994)

    Article  ADS  CAS  Google Scholar 

  29. Wilding, M. C. & McMillan, P. F. Polyamorphic transitions in yttria-alumina liquids. J. Non-Cryst. Solids 293–295, 357–365 (2001)

    Article  ADS  Google Scholar 

  30. Katayama, Y. et al. A first-order liquid–liquid phase transition in phosphorus. Nature 403, 170–173 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528–530 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Sastry and P. G. Debenedetti for discussions and comments, and N. Kitamura for information on silica glass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Mishima.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishima, O., Suzuki, Y. Propagation of the polyamorphic transition of ice and the liquid–liquid critical point. Nature 419, 599–603 (2002). https://doi.org/10.1038/nature01106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing