Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measurement of the conductance of a hydrogen molecule


Recent years have shown steady progress towards molecular electronics1,2, in which molecules form basic components such as switches3,4,5, diodes6 and electronic mixers7. Often, a scanning tunnelling microscope is used to address an individual molecule, although this arrangement does not provide long-term stability. Therefore, metal–molecule–metal links using break-junction devices8,9,10 have also been explored; however, it is difficult to establish unambiguously that a single molecule forms the contact11. Here we show that a single hydrogen molecule can form a stable bridge between platinum electrodes. In contrast to results for organic molecules, the bridge has a nearly perfect conductance of one quantum unit, carried by a single channel. The hydrogen bridge represents a simple test system in which to understand fundamental transport properties of single-molecule devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductance curves and histograms for clean Pt, and for Pt in a H2 atmosphere.
Figure 2: Differential conductance (top) and its derivative (bottom) for a Pt/H2 contact taken at a conductance plateau close to 1G0.
Figure 3: Vibration mode energies obtained from point contact spectra similar to that shown in Fig. 2.
Figure 4: Conductance histogram (black, left axis) and r.m.s. amplitude of the conductance fluctuations σGV (open squares, right axis) for a Pt/H2 sample.


  1. Aviram, A. & Ratner, M. (eds) Molecular Electronics: Science and Technology (Annals of the New York Academy of Sciences, New York, 1998)

  2. Langlais, V. J. et al. Spatially resolved tunneling along a molecular wire. Phys. Rev. Lett. 83, 2809–2812 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Gao, H. J. et al. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 84, 1780–1783 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  CAS  Google Scholar 

  5. Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W. & Tour, J. M. Molecular random access memory cell. Appl. Phys. Lett. 78, 3735–3737 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Metzger, R. M. & Cava, M. P. in Molecular Electronics: Science and Technology (eds Aviram, A. & Ratner, M.) 95–115 (Annals of the New York Academy of Sciences, New York, 1998)

    Google Scholar 

  7. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  CAS  Google Scholar 

  8. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997)

    Article  CAS  Google Scholar 

  9. Kergueris, C. et al. Electronic transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505–12513 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Emberly, E. G. & Kirczenow, G. Comment on “First-principles calculation of transport properties of a molecular device”. Phys. Rev. Lett. 87, 269701 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Experimental observation of the transition from weak link to tunneljunction. Physica C 191, 485–504 (1992)

    Article  ADS  Google Scholar 

  13. van Ruitenbeek, J. M. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 549–579 (Kluwer Academic, Dordrecht, 1997)

    Book  Google Scholar 

  14. Rubio, G., Agraït, N. & Vieira, S. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Agraït, N., Levy Yeyati, A. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Preprint cond-mat/0208239 at 〈〉 (2002).

  16. Yanson, I. K. Nonlinear effects in the electric conductivity of point junctions and electron-phonon interaction in metals. Zh. Eksp. Teor. Fiz. 66, 1035–1050 (1974); Sov. Phys. JETP 39, 506–513 (1974)

    CAS  Google Scholar 

  17. Jansen, A. G. M., van Gelder, A. P. & Wyder, P. Point-contact spectroscopy in metals. J. Phys. C 13, 6073–6118 (1980)

    Article  ADS  CAS  Google Scholar 

  18. Untiedt, C., Rubio Bollinger, G., Vieira, S. & Agraït, N. Quantum interference in atomic-sized point-contacts. Phys. Rev. B 62, 9962–9965 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Agraït, N., Untiedt, C., Rubio-Bollinger, G. & Vieira, S. Onset of dissipation in ballistic atomic wires. Phys Rev. Lett. 88, 216803 (2002)

    Article  ADS  Google Scholar 

  20. Bonča, J. & Trugman, S. A. Effect of inelastic processes on tunneling. Phys. Rev. Lett. 75, 2566–2569 (1995)

    Article  ADS  Google Scholar 

  21. Emberly, E. G. & Kirczenow, G. Landauer theory, inelastic scattering and electron transport in molecular wires. Phys. Rev. B 61, 5740–5750 (1999)

    Article  ADS  Google Scholar 

  22. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    Article  ADS  CAS  Google Scholar 

  23. van den Brom, H. E. & van Ruitenbeek, J. M. Quantum suppression of shot noise in atomic-size metallic contacts. Phys. Rev. Lett. 82, 1526–1529 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Khotkevich, A. V. & Yanson, I. K. Atlas of Point Contact Spectra of Electron-phonon Interactions in Metals (Kluwer Academic, Dordrecht, 1995)

    Book  Google Scholar 

  25. Ludoph, B. & van Ruitenbeek, J. M. Conductance fluctuations as a tool for investigating the quantum modes in atomic-size metallic contacts. Phys. Rev. B 61, 2273–2285 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Frisch, M. J. et al. Gaussian 98, Revision A.5 (Gaussian, Inc., Pittsburgh, Pennsylvania, 1998).

  27. Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements. Theor. Chim. Acta 77, 123–141 (1990)

    Article  CAS  Google Scholar 

  28. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  CAS  Google Scholar 

  29. Lang, N. D. Resistance of atomic wires. Phys. Rev. B 52, 5335–5342 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Lang, N. D. & Avouris, Ph. Electrical conductance of individual molecules. Phys. Rev. B 64, 125323 (2001)

    Article  ADS  Google Scholar 

  31. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002)

    Article  ADS  CAS  Google Scholar 

Download references


We acknowledge discussions with A. Levy Yeyati and S. K. Nielsen, and we thank D. Bakker and M. Pohlkamp for assistance in the experiments. C.U. and Y.N. were supported by European Community Marie Curie fellowships.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. M. van Ruitenbeek.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smit, R., Noat, Y., Untiedt, C. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing