Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Nature
  • Published:

Sequence of Plasmodium falciparum chromosome 12

Abstract

The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year1. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy2,3,4. Here we report the nucleotide sequence of the third largest of the parasite's 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Breman, J. G. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am. J. Trop. Med. Hyg. 64, 1–11 (2001)

    Article  CAS  Google Scholar 

  2. Hall, N. et al. Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13. Nature 419, 527–531 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Gardner, M. J. et al. Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14. Nature 419, 531–534 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Bowman, S. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Rubio, J. P., Thompson, J. K. & Cowman, A. F. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO J. 15, 4069–4077 (1996)

    Article  CAS  Google Scholar 

  8. Su, X. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999)

    Article  CAS  Google Scholar 

  9. Su, X. Z. & Wellems, T. E. Plasmodium falciparum: assignment of microsatellite markers to chromosomes by PFG-PCR. Exp. Parasitol. 91, 367–369 (1999)

    Article  CAS  Google Scholar 

  10. Jing, J. et al. Optical mapping of Plasmodium falciparum chromosome 2. Genome Res. 9, 175–181 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998)

    Article  CAS  Google Scholar 

  14. Oefner, P. J. et al. Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. Nucleic Acids Res. 24, 3879–3886 (1996)

    Article  CAS  Google Scholar 

  15. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998)

    Article  CAS  Google Scholar 

  16. Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998)

    Article  CAS  Google Scholar 

  17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  Google Scholar 

  18. Apweiler, R. et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37–40 (2001)

    Article  CAS  Google Scholar 

  19. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002)

    Article  CAS  Google Scholar 

  20. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)

    Article  CAS  Google Scholar 

  21. Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000)

    Article  CAS  Google Scholar 

  22. Claros, M. G. & Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996)

    Article  CAS  Google Scholar 

  23. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  CAS  Google Scholar 

  24. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the generosity of the participating scientists at Stanford University, TIGR, the WTSI, the NMRC and Oxford University. We also thank N. Hall, M. Berriman, A. Pain and B. Barrell for their time and expertise during the gene-calling annotation process, and are grateful to the members of our Stanford Genome Technology Center for their assistance throughout this project. We thank the Burroughs Wellcome Fund for support that allowed us to participate in the international Malaria Genome Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Hyman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyman, R., Fung, E., Conway, A. et al. Sequence of Plasmodium falciparum chromosome 12. Nature 419, 534–537 (2002). https://doi.org/10.1038/nature01102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01102

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing