Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Constraints on future changes in climate and the hydrologic cycle

A Corrigendum to this article was published on 15 August 2012

Abstract

What can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective, probability-based climate forecast, and this task will require a new generation of climate modelling experiments, systematically exploring the range of model behaviour that is consistent with observations. It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The range of transient climate response (TCR) consistent with recent observed temperature trends, compared to TCRs of some current AOGCMs.
Figure 2: Global-mean temperature and precipitation changes in AOGCM simulations (scatter plots), and probability distributions obtained by requiring consistency with recent observations (curves).
Figure 3: Changes in observed global-mean temperature (a) and land precipitation (b) over the past 55 years compared with a climate model.
Figure 4: Log–log plot of the distribution of an AOGCM's daily precipitation and how it changes around the time of CO2 doubling (J. M. Gregory, personal communication).
Figure 5
Figure 6: Zonal-mean precipitation trends over the 70 years to CO2 doubling in the CMIP-2 ensemble and observed trends in terrestrial precipitation over the past century.

References

  1. 1

    Palmer, T. N. Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 63, 71–116 (2000).

    ADS  Google Scholar 

  2. 2

    Smith, L. A. What might we learn from climate forecasts? Proc. Natl Acad. Sci. USA 99, 2487–2492 (2002).

    ADS  PubMed  Google Scholar 

  3. 3

    Folland, C. K. et al. in Climate Change 2001, The Science of Climate Change Ch. 2 (eds Houghton, J. T. et al.) 101–181 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  4. 4

    Cubasch, U. et al. in Climate Change 2001, The Science of Climate Change Ch. 9 (eds Houghton, J. T. et al.) 527–582 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  5. 5

    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Atmosphere—aerosols, climate and the hydrological cycle. Science 294, 2119–2124 (2001).

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Carnell, R. E. & Senior, C. A. Changes in mid latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim. Dynam. 14, 369–383 (1998).

    ADS  Google Scholar 

  7. 7

    Trenberth, K. E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Change 42, 327–339 (1999).

    Google Scholar 

  8. 8

    Kharin, V.V. & Zwiers, F. W. Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J. Clim. 13, 3760–3788 (2000).

    ADS  Google Scholar 

  9. 9

    Meehl, G. A. et al. Trends in extreme weather and climate events: issues related to modelling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 81, 427–436 (2000).

    ADS  Google Scholar 

  10. 10

    Palmer, T. N. & Räisänen, J. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512–514 (2002).

    CAS  PubMed  Google Scholar 

  11. 11

    Osborn, T. J., Hulme, M., Jones, P. D. & Basnett, T. A. Observed trends in the daily intensity of United Kingdom precipitation. Int. J. Climatol. 20, 347–364 (2000).

    Google Scholar 

  12. 12

    Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995).

    ADS  CAS  Google Scholar 

  14. 14

    Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002).

    ADS  CAS  Google Scholar 

  15. 15

    Pierrehumbert, R. T. in Mechanisms of Global Climate Change at Millennial Time Scales (Geophys. Monogr. 112) 339–361 (American Geophysical Union, Washington DC, 1999).

    Google Scholar 

  16. 16

    Andronova, N. G. & Schlesinger, M. E. Causes of global temperature changes during the 19th and 20th centuries. Geophys. Res. Lett. 27, 2137–3140 (2000).

    ADS  Google Scholar 

  17. 17

    Forest, C. E., Allen, M. R., Stone, P. H. & Sokolov, A. P. Constraining uncertainties in climate models using climate change detection techniques. Geophys. Res. Lett. 27, 569–572 (2000).

    ADS  CAS  Google Scholar 

  18. 18

    Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R. & Delworth, T. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407, 617–620 (2000).

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R. & Webster, M. D. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295, 113–117 (2002).

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Gregory, J. M., Stouffer, R., Raper, S., Rayner, N. & Stott, P. A. An observationally-based estimate of the climate sensitivity. J. Clim. (in the press).

  21. 21

    Allen, M. R. Do-it-yourself climate prediction. Nature 401, 642 (1999).

    ADS  Google Scholar 

  22. 22

    Wigley, T. M. L. & Raper, S. C. B. in Climate and Sea Level Change: Observations, Projections and Implications (eds Warrick, R. A., Barrow, E. M. & Wigley, T. M. L.) Ch. 7 (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  23. 23

    Sokolov, A. P. & Stone, P. H. A flexible climate model for use in integrated assessments. Clim. Dynam. 14, 291–303 (1998).

    ADS  Google Scholar 

  24. 24

    Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 81, 313–318 (2000).

    ADS  Google Scholar 

  25. 25

    Covey, C., AchutaRao, K. M., Lambert, S. J. & Taylor, K. E. Intercomparison of present and future climates simulated by coupled ocean-atmosphere GCMs. Tech. Rep. 66 (Program for Climate Model Diagnosis and Intercomparison, Livermore, 2000).

  26. 26

    Cubasch, U. et al. Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model. Clim. Dynam. 10, 1–19 (1994).

    ADS  Google Scholar 

  27. 27

    Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).

    ADS  CAS  Google Scholar 

  28. 28

    Barnett, T. P., Pierce, D. W. & Schnur, R. Detection of anthropogenic climate change in the world's oceans. Science 292, 270–274 (2001).

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    Stott, P. A. & Kettleborough, J. A. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416, 723–726 (2002).

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Knutti, R., Stocker, T. F., Joos, F. & Plattner, G. K. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416, 719–723 (2002).

    ADS  CAS  PubMed  Google Scholar 

  31. 31

    Webster, M. D. et al. Uncertainty analysis of global climate change projections. Tech. Rep. 73 〈http://web.mit.edu/globalchange/www/rpt73.html〉 (Massachusetts Institute of Technology, Cambridge, MA, 2001).

  32. 32

    Nozawa, T., Emori, S., Nakajima, A. Takemura, T. & Numaguti, A. in Present and Future of Modelling Global Environmental Change: Towards Integrated Modelling (ed. Matsuno, T.) (Terra Scientific, Tokyo, 2001).

    Google Scholar 

  33. 33

    Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag. Ser. 5, 41, 237–276 (1896).

    CAS  Google Scholar 

  34. 34

    Stocker, T. F. et al. in Climate Change 2001: The Scientific Basis Ch. 7 (eds Houghton, J. T. et al.) 417–470 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  35. 35

    Ingram, W. J. On the robustness of the water vapor feedback: GCM vertical resolution and formulation. J. Clim. 15, 917–921 (2002).

    ADS  Google Scholar 

  36. 36

    Schoneweise, C. D. & Rapp, J. Climatic Trends Atlas of Europe Based on Observations 1891–1990 (Kluwer, 1997).

    Google Scholar 

  37. 37

    Gaffen, D. J., Rosen, R. D., Salstein, D. A. & Boyle, J. S. Evaluation of tropospheric water vapor simulations from the atmospheric model intercomparison project. J. Clim. 10, 1648–1661 (1999).

    ADS  Google Scholar 

  38. 38

    New, M., Hulme, M. & Jones, P. Representing twentieth-century space-time climate variability. part ii: Development of 1901-96 monthly grids of terrestrial surface climate. J. Clim. 13, 2217–2238 (2000).

    ADS  Google Scholar 

  39. 39

    Ross, R. J., Elliott, W. P. & Seidel, D. J. Lower-tropospheric humidity-temperature relationships in radiosonde observations and atmospheric general circulation models. J. Hydrometeorol. 3, 26–38 (2001).

    ADS  Google Scholar 

  40. 40

    Zhai, P. M. & Eskridge, R. E. Atmospheric water vapor over china. J. Clim. 10, 2643–2652 (1997).

    ADS  Google Scholar 

  41. 41

    Elliott, W. P. On detecting long-term changes in atmospheric moisture. Clim. Change 31, 349–367 (1995).

    ADS  Google Scholar 

  42. 42

    Bates, J. J., Jackson, D. L., Breon, F. M. & Bergen, Z. D. Variability of tropical upper tropospheric humidity 1979–1998. J. Geophys. Res. 106, 32271–32281 (2001).

    ADS  Google Scholar 

  43. 43

    Soden, B. J., Wetherald, R. T., Stenchikov, G. L. & Robock, A. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296, 727–730 (2002).

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Boer, G. J. Climate change and the regulation of the surface moisture and energy budgets. Clim. Dynam. 8, 225–239 (1993).

    ADS  Google Scholar 

  45. 45

    LeTreut, H. & McAveney, B. J. A model intercomparison of equilibrium climate change in response to CO2 doubling. Tech. Rep. 18 (Institute Pierre Simon LaPlace, Paris, 2000).

  46. 46

    Schlesinger, M. E. & Mitchell, J. F. B. in Projecting the Climatic Effects of Increasing Carbon Dioxide (eds MacCracken, M. C. & Luther, F. M.) 81–147 (United States Dept Energy, 1985).

    Google Scholar 

  47. 47

    Mitchell, J. F. B., Wilson, C. A. & Cunnington, W. M. On CO2 climate sensitivity and model dependence of results. Q. J. R. Meteorol. Soc. 113, 293–322 (1987).

    ADS  CAS  Google Scholar 

  48. 48

    Mitchell, J. F. B. The seasonal response of a general circulation model to changes in CO2 and sea temperatures. Q. J. R. Meteorol. Soc. 109, 113–152 (1983).

    ADS  CAS  Google Scholar 

  49. 49

    Stott, P. A. et al. External control of twentieth century temperature by natural and anthropogenic forcings. Science 290, 2133–2137 (2000).

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Mitchell, J. F. B. et al. in Climate Change 2001, The Science of Climate Change Ch. 12 (eds Houghton, J. T. et al.) 697–738 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  51. 51

    Santer, B. D. et al. A search for human influences on the thermal structure of the atmosphere. Nature 382, 39–46 (1996).

    ADS  CAS  Google Scholar 

  52. 52

    Tett, S. F. B., Mitchell, J. F. B., Parker, D. E. & Allen, M. R. Human influence on the atmospheric vertical temperature structure: detection and observations. Science 247, 1170–1173 (1996).

    ADS  Google Scholar 

  53. 53

    Hulme, M., Osborne, T. J. & Johns, T. C. Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys. Res. Lett. 25, 3379–3382 (1998).

    ADS  Google Scholar 

  54. 54

    Sokolov, A., Forest, C. E. & Stone, P. H. A comparison of the behaviour of different AOGCMs in transient climate change experiments. Tech. Rep. 81 (MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA, 2001).

  55. 55

    Hulme, M., Turnpenny, J. & Jenkins, G. Climate change scenarios for the United Kingdom: the UKCIP Briefing Report (Tyndall Centre for Climate Change Research, 2002).

  56. 56

    Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).

    ADS  Google Scholar 

  57. 57

    Giorgi, F. et al. in Climate Change 2001, The Science of Climate Change Ch. 10 (eds Houghton, J. T. et al.) 585–638 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  58. 58

    Groisman P. Ya et al. Changes in the probability of heavy precipitation: important indicators of climatic change. Clim. Change 42, 243–283 (1999).

    Google Scholar 

  59. 59

    Karl, T. R., Knight, R. W. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995).

    ADS  CAS  Google Scholar 

  60. 60

    Karl, T. R. & Knight, R. W. Secular trends of precipitation amount, frequency, and intensity in the united states. Bull. Am. Meteorol. Soc. 79, 231–241 (1998).

    ADS  Google Scholar 

  61. 61

    Huntingford, C. et al. Regional climate model predictions of extreme rainfall for a changing climate. Q. J. R. Meteorol. Soc. (in the press).

  62. 62

    Manabe, S. & Wetherald, R. T. On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci. 37, 99–118 (1980).

    ADS  Google Scholar 

  63. 63

    Dai, A., Trenberth, K. E. & Karl, T. R. Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett. 25, 3367–3370 (1998).

    ADS  Google Scholar 

  64. 64

    Gregory, J. M., Mitchell, J. F. B. & Brady, A. J. Summer drought in northern mid-latitudes in a time-dependent CO2 climate experiment. J. Clim. 10, 662–686 (1997).

    ADS  Google Scholar 

  65. 65

    Wetherald, R. T. & Manabe, S. Detectability of summer dryness caused by greenhouse warming. Clim. Change 43, 495–511 (1999).

    CAS  Google Scholar 

  66. 66

    Trenberth, K. E. & Hoar, T. J. The 1990–1995 El Niño/Southern Oscillation event: the strongest on record? Geophys. Res. Lett. 23, 57–60 (1996).

    ADS  Google Scholar 

  67. 67

    Wunsch, C. The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Am. Meteorol. Soc. 80, 245–255 (1999).

    ADS  Google Scholar 

  68. 68

    Trenberth, K. E. & Hurrell, J. E. Comments on: 'The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations'. Bull. Am. Meteorol. Soc. 80, 2721–2722 (1999).

    Google Scholar 

  69. 69

    Timmermann, A. et al. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 694–696 (1999).

    ADS  CAS  Google Scholar 

  70. 70

    Collins, M. Understanding uncertainties in the response of ENSO to greenhouse warming. Geophys. Res. Lett. 27, 3509–3513 (2000).

    ADS  CAS  Google Scholar 

  71. 71

    Hulme, M. A 1951-80 global land precipitation climatology for the evaluation of general-circulation models. Clim. Dynam. 7, 57–72 (1992).

    ADS  Google Scholar 

  72. 72

    Huffman, G. J. et al. The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 78, 5–20 (1997).

    ADS  Google Scholar 

  73. 73

    Spencer, R. W. Global oceanic precipitation from the msu during 1979-91 and comparisons to other climatologies. J. Clim. 6, 1301–1326 (1993).

    ADS  Google Scholar 

  74. 74

    Xie, P. P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

    ADS  Google Scholar 

  75. 75

    New, M., Todd, M., Hulme, M. & Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Clim. 21, 1899 (2001).

    Google Scholar 

  76. 76

    Huffman, G. J. et al. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–50 (2001).

    ADS  Google Scholar 

  77. 77

    Trenberth, K. E. & Caron, J. M. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 14, 3433–3443 (2001).

    ADS  Google Scholar 

  78. 78

    Chen, J. Y., Carlson, B. E. & Del Genio, A. D. Evidence for strengthening of the tropical general circulation in the 1990s. Science 295, 838–841 (2002).

    ADS  CAS  PubMed  Google Scholar 

  79. 79

    Wielicki, B. A. et al. Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295, 841–844 (2002).

    ADS  CAS  PubMed  Google Scholar 

  80. 80

    Trenberth, K. E. et al. Changes in tropical cloud and radiation. Science Online 296, 2095a (2002).

    Google Scholar 

  81. 81

    Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    ADS  CAS  PubMed  Google Scholar 

  82. 82

    Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. J. Clim. 13, 1000–1036 (2000).

    ADS  Google Scholar 

  83. 83

    Carnell, R. E. & Senior, C. A. An investigation into the mechanisms of changes in mid-latitude mean sea level pressure as greenhouse gases are increased. Clim. Dynam. 18, 533–543 (2002).

    ADS  Google Scholar 

  84. 84

    Gillett, N. P. et al. How linear is the Arctic Oscillation response to greenhouse gases? J. Geophys. Res. 10.1029/2001JD000589 (2002).

  85. 85

    Venzke, S., Allen, M. R., Sutton, R. T. & Rowell, D. P. The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Clim. 12, 2562–2584 (1999).

    ADS  Google Scholar 

  86. 86

    Hoerling, M. P., Hurrell, J. W. & Xu, T. Y. Tropical origins for recent North Atlantic climate change. Science 292, 90–92 (2001).

    ADS  CAS  PubMed  Google Scholar 

  87. 87

    Corti, S. & Palmer, T. N. Sensitivity analysis of atmospheric low-frequency variability. Q. J. R. Meteorol. Soc. 123, 2425–2447 (1997).

    ADS  Google Scholar 

  88. 88

    Ramaswamy, V. et al. in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton, J. T. et al.) (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  89. 89

    Seager, R. et al. Is the Gulf Stream responsible for europe's mild winters? Q. J. R. Meteorol. Soc. (in the press).

  90. 90

    Rahmstorf, S. On the freshwater forcing and transport of the North Atlantic Thermohaline Circulation. Clim. Dynam. 12, 799–811 (1996).

    ADS  Google Scholar 

  91. 91

    Knutti, R. & Stocker, T. F. Limited predictability of the future thermohaline circulation close to an instability threshold. J. Clim. 15, 179–186 (2002).

    ADS  Google Scholar 

  92. 92

    Smith, L. A. in Nonlinear Dynamics and Statistics (ed. Mees, A. I.) 31–64 (Birkhauser, Boston, 2001).

    Google Scholar 

  93. 93

    Hansen, J. A., Allen, M. R., Stainforth, D. A., Heaps, A. & Stott, P. A. Casino-21: climate simulation of the 21st century. World Resource Rev. 13, 187–189 (2001).

    Google Scholar 

  94. 94

    Stainforth, D. et al. Distributed computing for public-interest climate modeling research. Comput. Sci. Eng. 4, 82–89 (2002).

    Google Scholar 

  95. 95

    Mitchell, J. F. B., Johns, T. C. & Senior, C. A. The transient response to increasing greenhouse gases using models with and without flux adjustment. Tech. Rep. 〈http://www.metoffice.com/research/hadleycentre/pubs/HCTN〉 (1998).

Download references

Acknowledgements

We are grateful to G. Hegerl and K. Trenberth for thorough reviews; to J. Gregory, C. Forest, J. Mitchell, L. Smith and I. Tracey for helpful suggestions; and to B. Booth, B. Grey and H. Lambert for help with the figures. M. Webster, M. Hulme, P. Stott and J. Gregory kindly provided unpublished data used in Figs 1, 3 and 4, and we thank C. Covey and the CMIP-2 data team for data in Figs 2, 5 and 6. M.R.A. is supported by the UK NERC and US NOAA & DoE, W.J.I. by the UK Government Meteorological Research Programme and D.A.S. by the NERC COAPEC Programme. The http://www.climateprediction.net programme is funded by the UK NERC, EPSRC and DTI 'e-Science' programmes.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allen, M., Ingram, W. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 228–232 (2002). https://doi.org/10.1038/nature01092

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing