Ocean circulation and climate during the past 120,000 years


Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5–10 °C and massive surges of icebergs into the North Atlantic Ocean — events that have occurred repeatedly during the last glacial cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes in surface air temperature caused by a shutdown of North Atlantic Deep Water (NADW) formation in a current ocean–atmosphere circulation model.
Figure 2: Schematic of the three modes of ocean circulation that prevailed during different times of the last glacial period.
Figure 3: Temperature reconstructions from ocean sediments and Greenland ice.
Figure 4: Overview of palaeoclimatic proxy data10 characterizing warm phases (top) and cold phases (bottom) during marine oxygen isotope stage 3 (MIS-3; 59–29 kyr ago, compare with Fig. 3).


  1. 1

    Gill, A. E. Atmosphere-Ocean Dynamics (Academic, San Diego, 1982).

    Google Scholar 

  2. 2

    Rahmstorf, S. & Ganopolski, A. Long-term global warming scenarios computed with an efficient coupled climate model. Clim. Change 43, 353–367 (1999).

    CAS  Google Scholar 

  3. 3

    Rahmstorf, S. Rapid climate transitions in a coupled ocean–atmosphere model. Nature 372, 82–85 (1994).

    ADS  CAS  Google Scholar 

  4. 4

    Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841–866 (1988).

    ADS  Google Scholar 

  5. 5

    Ganopolski, A. et al. CLIMBER-2: a climate system model of intermediate complexity. Part II: Model sensitivity. Clim. Dynam. 17, 735–751 (2001).

    ADS  Google Scholar 

  6. 6

    Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995).

    ADS  CAS  Google Scholar 

  7. 7

    Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002).

    Google Scholar 

  8. 8

    Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).

    ADS  Google Scholar 

  10. 10

    Voelker, A. H. L. et al. Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1214 (2002).

    ADS  Google Scholar 

  11. 11

    Elliot, M., Labeyrie, L. & Duplessy, J.-C. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60–10 ka). Quat. Sci. Rev. 21, 1153–1165 (2002).

    ADS  Google Scholar 

  12. 12

    Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).

    ADS  CAS  Google Scholar 

  13. 13

    Bianchi, G. G. & McCave, I. N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397, 515–517 (1999).

    ADS  CAS  Google Scholar 

  14. 14

    Lynch-Stieglitz, J., Curry, W. B. & Slowey, N. Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature 402, 644–648 (1999).

    ADS  CAS  Google Scholar 

  15. 15

    Sarnthein, M. et al. Changes in east Atlantic deepwater circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography 9, 209–267 (1994).

    ADS  Google Scholar 

  16. 16

    Alley, R. B. & Clark, P. U. The deglaciation of the Northern Hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci. 27, 149–182 (1999).

    ADS  CAS  Google Scholar 

  17. 17

    Oppo, D. & Lehman, S. J. Mid-depth circulation of the subpolar North Atlantic during the Last Glacial Maximum. Science 259, 1148–1152 (1993).

    ADS  CAS  Google Scholar 

  18. 18

    Keigwin, L. D. & Lehman, S. J. Deep circulation change linked to Heinrich event 1 and Younger Dryas in a mid-depth North Atlantic core. Paleoceanography 9, 185–194 (1994).

    ADS  Google Scholar 

  19. 19

    Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).

    ADS  Google Scholar 

  20. 20

    Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dynam. 18, 579–586 (2002).

    ADS  Google Scholar 

  21. 21

    Petoukhov, V. et al. CLIMBER-2: a climate system model of intermediate complexity. Part I: Model description and performance for present climate. Clim. Dynam. 16, 1–17 (2000).

    ADS  Google Scholar 

  22. 22

    Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356 (1998).

    ADS  Google Scholar 

  23. 23

    Weaver, A. J., Eby, M., Fanning, A. F. & Wiebe, E. C. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394, 847–853 (1998).

    ADS  CAS  Google Scholar 

  24. 24

    Bush, A. B. G. & Philander, S. G. H. The role of ocean-atmosphere interactions in tropical cooling during the Last Glacial Maximum. Science 279, 1341–1344 (1998).

    ADS  CAS  PubMed  Google Scholar 

  25. 25

    Hewitt, C. D., Broccoli, A. J., Mitchell, J. F. B. & Stouffer, R. J. A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm? Geophys. Res. Lett. 28, 1571–1574 (2001).

    ADS  Google Scholar 

  26. 26

    Webb, R. S., Rind, D. H., Lehman, S. J., Healy, R. J. & Sigman, D. Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385, 695–699 (1997).

    ADS  CAS  Google Scholar 

  27. 27

    Kubatzki, C., Montoya, M., Rahmstorf, S., Ganopolski, A. & Claussen, M. Comparison of the last interglacial climate simulated by a coupled global model of intermediate complexity and an AOGCM. Clim. Dynam. 16, 799–814 (2000).

    ADS  Google Scholar 

  28. 28

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    Paillard, D. Glacial cycles: toward a new paradigm. Rev. Geophys. 39, 325–346 (2001).

    ADS  CAS  Google Scholar 

  30. 30

    Gallimore, R. G. & Kutzbach, J. E. Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381, 503–505 (1996).

    ADS  CAS  Google Scholar 

  31. 31

    Khodri, M. et al. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–574 (2001).

    ADS  CAS  PubMed  Google Scholar 

  32. 32

    Gildor, H. & Tziperman, E. A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys. Res. 106, 9117–9133 (2001).

    ADS  Google Scholar 

  33. 33

    Rahmstorf, S. in Encyclopedia of Ocean Sciences (eds Steele, J., Thorpe, S. & Turekian, K.) 1–6 (Academic, London, 2001).

    Google Scholar 

  34. 34

    Alley, R. B., Anandakrishnan, S. & Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography 16, 190–198 (2001).

    ADS  Google Scholar 

  35. 35

    Gammaitoni, L., Hanggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998).

    ADS  CAS  Google Scholar 

  36. 36

    Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985).

    ADS  CAS  Google Scholar 

  37. 37

    Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).

    ADS  Google Scholar 

  38. 38

    Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfi, W. A salt oscillator in the glacial North Atlantic? 1. The concept. Paleoceanography 5, 469–477 (1990).

    ADS  Google Scholar 

  39. 39

    Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dynam. 12, 799–811 (1996).

    ADS  Google Scholar 

  40. 40

    Birchfield, G. E., Wang, H. & Rich, J. J. Century/millennium internal climate variability: an ocean-atmosphere-continental icesheet model. J. Geophys. Res. 99, 12459–12470 (1994).

    ADS  Google Scholar 

  41. 41

    Winton, M. & Sarachik, E. S. Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr. 23, 1389–1410 (1993).

    ADS  Google Scholar 

  42. 42

    Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Bond, G. et al. Persistent solar influence on North Atlantic climate during the holocene. Science 294, 2130–2136 (2001).

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Van Geel, B. et al. The role of solar forcing upon climate change. Quat. Sci. Rev. 18, 331–338 (1999).

    ADS  Google Scholar 

  45. 45

    Rahmstorf, S. & Alley, R. B. Stochastic resonance in glacial climate. Eos 83, 129–135 (2002).

    ADS  Google Scholar 

  46. 46

    Ganopolski, A. & Rahmstorf, S. Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett. 88, 038501-1–038501-4 (2002).

    ADS  Google Scholar 

  47. 47

    Clement, A. C. & Cane, M. A. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 363–371 (Am. Geophys. Union, Washington DC, 1999).

    Google Scholar 

  48. 48

    Cane, M. A. & Clement, A. C. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 373–383 (Am. Geophys Union, Washington DC, 1999).

    Google Scholar 

  49. 49

    Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 143–152 (1988).

    Google Scholar 

  50. 50

    Hemming, S. R., Bond, G. C., Broecker, W. S., Sharp, W. D. & Klas-Mendelson, M. Evidence from Ar-40/Ar-39 ages of individual hornblende grains for varying Laurentide sources of iceberg discharges 22,000 to 10,500 yr BP. Quat. Res. 54, 372–383 (2000).

    CAS  Google Scholar 

  51. 51

    Bond, G. et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial. Nature 360, 245–249 (1992).

    ADS  Google Scholar 

  52. 52

    Andrews, J. T. Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments: a history and review of data and concepts. J. Quat. Sci. 13, 3–16 (1998).

    Google Scholar 

  53. 53

    Chappell, J. Sea level changes forced ice breakouts in the last glacial cycle: new results from coral terraces. Quat. Sci. Rev. 21, 1229–1240 (2002).

    ADS  Google Scholar 

  54. 54

    MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775–784 (1993).

    ADS  Google Scholar 

  55. 55

    Clark, P. U., Alley, R. B. & Pollard, D. Northern hemisphere ice sheet influences on global climate change. Science 286, 1104–1111 (1999).

    CAS  Google Scholar 

  56. 56

    Keigwin, L. D., Curry, W. B., Lehman, S. J. & Johnsen, S. The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371, 323–326 (1994).

    ADS  Google Scholar 

  57. 57

    Manabe, S. & Stouffer, R. J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–167 (1995).

    ADS  CAS  Google Scholar 

  58. 58

    Maier-Reimer, E., Mikolajewicz, U., Wooster, W. & Yáñez-Arancibia, A. in Oceanography (ed. Ayala-Castañares, A.) 87–100 (National Autonomous University (UNAM) Press, Mexico, 1989).

    Google Scholar 

  59. 59

    Stocker, T. F. & Wright, D. G. Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991).

    ADS  Google Scholar 

  60. 60

    Weaver, A. J. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 285–300 (Am. Geophys. Union, Washington DC, 1999).

    Google Scholar 

  61. 61

    Paillard, D. & Cortijo, E. A simulation of the Atlantic meridional circulation during Heinrich event 4 using reconstructed sea surface temperatures and salinities. Paleoceanography 14, 716–724 (1999).

    ADS  Google Scholar 

  62. 62

    Cacho, I. et al. Dansgaard-Oeschger and Heinrich event imprints in the Alboran Sea paleotemperatures. Paleoceanography 14, 698–705 (1999).

    ADS  Google Scholar 

  63. 63

    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).

    ADS  CAS  PubMed  Google Scholar 

  64. 64

    Blunier, T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998).

    ADS  CAS  Google Scholar 

  65. 65

    Crowley, T. J. North Atlantic deep water cools the Southern Hemisphere. Paleoceanography 7, 489–497 (1992).

    ADS  Google Scholar 

  66. 66

    Stocker, T. F. The seesaw effect. Science 282, 61–62 (1998).

    CAS  Google Scholar 

  67. 67

    Seidov, D., Haupt, B. J., Barron, E. J. & Maslin, M. in The Oceans and Rapid Climate Change: Past, Present, and Future (eds Seidov, D., Haupt, B. J. & Maslin, M.) 147–167 (Am. Geophys. Union, Washington DC, 2001).

    Google Scholar 

  68. 68

    Bond, G. C. & Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, 1005–1010 (1995).

    ADS  CAS  PubMed  Google Scholar 

  69. 69

    Bond, G. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 35–58 (Am. Geophys. Union, Washington DC, 1999).

    Google Scholar 

  70. 70

    Alley, R. B., Brook, E. J. & Anandakrishnan, S. A northern lead in the orbital band: north-south phasing of ice-age events. Quat. Sci. Rev. 21, 431–441 (2002).

    ADS  Google Scholar 

  71. 71

    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

    ADS  CAS  PubMed  Google Scholar 

  72. 72

    Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).

    ADS  CAS  PubMed  Google Scholar 

  73. 73

    Clark, P. U. et al. Freshwater forcing of abrupt climate change during the last glaciation. Science 293, 283–287 (2001).

    ADS  CAS  PubMed  Google Scholar 

  74. 74

    Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    ADS  Google Scholar 

  75. 75

    Fanning, A. F. & Weaver, A. J. Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas. Paleoceanography 12, 307–320 (1997).

    ADS  Google Scholar 

  76. 76

    Manabe, S. & Stouffer, R. Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997).

    ADS  Google Scholar 

  77. 77

    Denton, G. H. & Hendy, C. H. Younger Dryas advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science 264, 1434–1437 (1994).

    ADS  CAS  PubMed  Google Scholar 

  78. 78

    Hajdas, I., Bonani, G., Moreno, P. I. & Ariztegui, D. Precise radiocarbon dating of a Younger Dryas-age cooling in mid-latitude South America. A step towards inter-hemispheric climate linkage. Quat. Res. (in the press).

  79. 79

    Moreno, P. I., Jacobson, G. L., Lowell, T. V. & Denton, G. H. Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409, 804–808 (2001).

    ADS  CAS  PubMed  Google Scholar 

  80. 80

    Renssen, H., Van Geel, B., Van der Plicht, J. & Magny, M. Reduced solar activity as a trigger for the start of the Younger Dryas? Quat. Int. 68–71, 373–383 (2001).

    Google Scholar 

  81. 81

    Renssen, H., Goosse, H., Fichefet, T. & Campin, J.-M. The 8.2 kyr BP event simulated by a global atmosphere-sea-ice-ocean model. Geophys. Res. Lett. 28, 1567–1570 (2001).

    ADS  Google Scholar 

  82. 82

    Tudhope, A. W. et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291, 1511–1517 (2001).

    ADS  CAS  PubMed  Google Scholar 

  83. 83

    Clement, A., Seager, R. & Cane, M. A. Suppression of El Niño during the mid-holocene by changes in the earth's orbit. Paleoceanography 15, 731–737 (2000).

    ADS  Google Scholar 

  84. 84

    Muscheler, R., Beer, J., Wagner, G. & Finkel, R. G. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature 408, 567–570 (2000).

    ADS  CAS  PubMed  Google Scholar 

  85. 85

    Marchal, O. et al. Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Clim. Dynam. 15, 341–354 (1999).

    ADS  Google Scholar 

  86. 86

    Sachs, J. P. & Lehman, S. J. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286, 756–759 (1999).

    CAS  PubMed  Google Scholar 

  87. 87

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    ADS  CAS  Google Scholar 

  88. 88

    Rahmstorf, S. The thermohaline ocean circulation—a system with dangerous thresholds? Clim. Change 46, 247–256 (2000).

    Google Scholar 

  89. 89

    Munk, W. & Wunsch, C. Abyssal recipes II: energetics of wind and tidal mixing. Deep Sea Res. 45, 1977–2010 (1998).

    Google Scholar 

  90. 90

    Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000).

    ADS  CAS  PubMed  Google Scholar 

  91. 91

    Rahmstorf, S. in Beyond El Niño: Decadal and Interdecadal Climate Variability (ed. Navarra, A.) 309–332 (Springer, Berlin, 1999).

    Google Scholar 

  92. 92

    Delworth, T., Manabe, S. & Stouffer, R. J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Clim. 6, 1993–2011 (1993).

    ADS  Google Scholar 

  93. 93

    Bacon, S. Decadal variability in the outflow from the Nordic Seas to the deep Atlantic Ocean. Nature 394, 871–874 (1998).

    ADS  CAS  Google Scholar 

  94. 94

    Marshall, J. & et al. North Atlantic climate variability: phenomena, impacts and mechanisms. Int. J. Clim. 21, 1863–1898 (2001).

    Google Scholar 

  95. 95

    Dickson, R. R., Lazier, J., Meincke, J., Rhines, P. & Swift, J. Long-term co-ordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38, 241–295 (1996).

    ADS  Google Scholar 

  96. 96

    Dickson, R. R. et al. Rapid freshening of the deep North Atlantic over the past four decades. Nature 410, 832–837 (2001).

    Google Scholar 

  97. 97

    Hansen, B., Turrell, W. R. & Østerhus, S. Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature 411, 927–930 (2001).

    ADS  CAS  PubMed  Google Scholar 

  98. 98

    Lenderink, G. & Haarsma, R. J. Variability and multiple equilibria of the thermohaline circulation, associated with deep water formation. J. Phys. Oceanogr. 24, 1480–1493 (1994).

    ADS  Google Scholar 

  99. 99

    Stouffer, R. J. & Manabe, S. Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: sensitivity to the rate of increase. J. Clim. 12, 2224–2237 (1999).

    ADS  Google Scholar 

Download references


This manuscript has benefited greatly from the advice of A. Ganopolski, R. Alley, G. Bond and M. Cane, and from the lively discussions within the National Oceanic and Atmospheric Administration's Panel on Abrupt Climate Change.

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002). https://doi.org/10.1038/nature01090

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing