Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Forward scattering due to slow-down of the intermediate in the H + HD → D + H2 reaction

Abstract

Quantum dynamical processes near the energy barrier that separates reactants from products influence the detailed mechanism by which elementary chemical reactions occur. In fact, these processes can change the product scattering behaviour from that expected from simple collision considerations, as seen in the two classical reactions F + H2 → HF + H and H + H2 → H2 + H and their isotopic variants. In the case of the F + HD reaction, the role of a quantized trapped Feshbach resonance state had been directly determined1, confirming previous conclusions2 that Feshbach resonances cause state-specific forward scattering of product molecules. Forward scattering has also been observed in the H + D2 → HD + D reaction3,4 and attributed to a time-delayed mechanism3,5,6,7. But despite extensive experimental8,9,10,11,12 and theoretical13,14,15,16,17,18 investigations, the details of the mechanism remain unclear. Here we present crossed-beam scattering experiments and quantum calculations on the H + HD → H2 + D reaction. We find that the motion of the system along the reaction coordinate slows down as it approaches the top of the reaction barrier, thereby allowing vibrations perpendicular to the reaction coordinate and forward scattering. The reaction thus proceeds, as previously suggested7, through a well-defined ‘quantized bottleneck state’ different from the trapped Feshbach resonance states observed before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional product contour plots as a function of product velocity.
Figure 2: The angle-resolved time delay for H + HD → D + H2(v′ = 0) at Ec = 1.200 eV, summed over final rotational states.
Figure 3: Schematic illustration of the time-delayed reaction mechanism.
Figure 4: Characteristics of the ‘quantized bottleneck state’ giving rise to forward product scattering.

Similar content being viewed by others

References

  1. Skodje, R. T. et al. Resonance-mediated chemical reaction: F + HD → HF + D. Phys. Rev. Lett. 85, 1206–1209 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Neumark, D. M., Wodtke, A. M., Robinson, G. N., Hayden, C. C. & Lee, Y. T. Experimental investigation of resonances in reactive scattering: The F + H2 reaction. Phys. Rev. Lett. 53, 226–229 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Fernandes-Alonso, F. et al. Evidence for scattering resonances in the H + D2 reaction. Angew. Chem. Int. Edn Engl. 39, 2748–2752 (2001)

    Article  Google Scholar 

  4. Fernandez-Alonso, F. et al. Forward scattering in the H + D2 → HD + D reaction: comparison between experiment and theoretical predictions. J. Chem. Phys. 115, 4534–4545 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Althorpe, S. C. et al. Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature 416, 67–70 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Aoiz, F. J., Herrero, V. J. & Saez Rabanos, V. Quasiclassical state to state reaction cross sections for D + H2(ν = 0,j = 0) → HD(ν′,j′) + H. Formation and characteristics of short-lived collision complexes. J. Chem. Phys. 97, 7423–7436 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Allison, T. C., Friedman, R. S., Kaufman, D. J. & Truhlar, D. G. Analysis of the resonance in H + D2 → HD(v′ = 3) + D. Chem. Phys. Lett. 327, 439–445 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Buntin, S. A., Giese, C. F. & Gentry, W. R. State-resolved differential cross sections for the reaction D + H2 → HD + H. J. Chem. Phys. 87, 1443–1445 (1987)

    Article  ADS  CAS  Google Scholar 

  9. Kliner, D. A., Adelman, D. E. & Zare, R. N. Comparison of experimental and theoretical integral cross sections for D + H2(ν = 1,j = 1) → HD(ν′ = 1,j′) + H. J. Chem. Phys. 95, 1648–1662 (1991)

    Article  ADS  CAS  Google Scholar 

  10. Kitsopoulos, T. N., Buntine, M. A., Balwin, D. P., Zare, R. N. & Chandler, D. W. Reaction product imaging: The H + D2 reaction. Science 260, 1605–1610 (1993)

    Article  ADS  CAS  Google Scholar 

  11. Schnieder, L. et al. Experimental studies and theoretical predictions for the H + D2 → HD + D reaction. Science 269, 207–210 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Schnieder, L., Seekamp-Rahn, K., Wrede, E. & Welge, K. H. Experimental determination of quantum state resolved differential cross sections for the hydrogen exchange reaction H + D2 → HD + D. J. Chem. Phys. 107, 6175–6195 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Zhang, J. Z. H. & Miller, W. H. Quantum reactive scattering via the S-matrix version of the Kohn variational principle: Differential and integral cross sections for D + H2 → HD + H. J. Chem. Phys. 91, 1528–1547 (1991)

    Article  ADS  Google Scholar 

  14. Zhao, M., Truhlar, D. G., Schwenke, D. W. & Kouri, D. J. Effect of rotational excitation on state-to-state differential cross sections: deuterium atom + hydrogen → hydrogen deuteride + hydrogen atom. J. Phys. Chem. 94, 7074–7090 (1990)

    Article  CAS  Google Scholar 

  15. Zhao, M. et al. Spectroscopic analysis of transition state energy levels: Bending–rotational spectrum and lifetime analysis of H3 quasibound states. J. Chem. Phys. 91, 5302–5309 (1989)

    Article  ADS  CAS  Google Scholar 

  16. D'Mello, M. J., Manolopoulos, D. E. & Wyatt, R. E. Quantum dynamics of the H + D2 → D + HD reaction: Comparison with experiment. J. Chem. Phys. 94, 5985–5993 (1991)

    Article  ADS  CAS  Google Scholar 

  17. Skouteris, D. M., Castillo, J. F. & Manolopoulos, D. E. ABC: a quantum reactive scattering program. Comput. Phys. Commun. 133, 128–135 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Chao, S. D. & Skodje, R. T. The search for resonance signatures in H + D2 reaction dynamics. Chem. Phys. Lett. 336, 364–370 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Schnieder, L. et al. Photodissociation dynamics of H2S at 121.6 nm and a determination of the potential energy function of SH(A2Σ+). J. Chem. Phys. 92, 7027–7037 (1990)

    Article  ADS  CAS  Google Scholar 

  20. Boothroyd, A. I., Keogh, W. J., Martin, P. G. & Peterson, M. R. A refined H3 potential energy surface. J. Chem. Phys. 104, 7139–7152 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Goldberger, M. L. & Watson, K. M. Collision Theory (Wiley, New York, 1964)

    MATH  Google Scholar 

  22. Cuccaro, S. A., Hipes, P. G. & Kuppermann, A. Symmetry analysis of accurate H + H2 resonances for low partial waves. Chem. Phys. Lett. 157, 440–446 (1989)

    Article  ADS  CAS  Google Scholar 

  23. Skodje, R. T., Sadeghi, R., Koppel, H. & Krause, J. L. Spectral quantization of transition state dynamics for the three-dimensional H + H2 reaction. J. Chem. Phys. 101, 1725–1729 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Chatfield, D. C., Mielke, S. L., Allison, T. C. & Truhlar, D. G. Quantized dynamical bottlenecks and transition state control of the reaction of D with H2: Effect of varying the total angular momentum. J. Chem. Phys. 112, 8387–8408 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Sadeghi, R. & Skodje, R. T. Barriers, thresholds, and resonances: Spectral quantization of the transition state for the collinear D + H2 reaction. J. Chem. Phys. 102, 193–213 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Chatfield, D. C., Friedman, R. S., Schwenke, D. W. & Truhlar, D. G. Control of chemical reactivity by quantized transition states. J. Phys. Chem. 96, 2414–2421 (1992)

    Article  CAS  Google Scholar 

  27. Harich, S. A., Dai, D., Yang, X., Chao, S. D. & Skodje, R. T. State-to-state dynamics of H + HD → H2 + D at 0.5 eV: A combined theoretical and experimental study. J. Chem. Phys. 116, 4769–4772 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Liu, X., Lin, J. J., Harich, S. A., Schatz, G. C. & Yang, X. A quantum state-resolved insertion reaction: O(1D) + H2(j = 0) → OH(2Π,ν,N) + H(2S). Science 289, 1536–1538 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Kuppermann, A., Schatz, G. C. & Baer, M. Quantum mechanical reactive scattering for planar atom plus diatom systems. I. Theory. J. Chem. Phys. 65, 4596–4623 (1976)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Liu and Y.T. Lee for many helpful discussions. The experimental work was supported mainly by the National Science Council and Academia Sinica of Taiwan, and the theoretical effort was supported by the National Science Foundation of USA, and by the Ministry of Education, Culture, Sports, Science and Technology of Japan. D.D. and X.Y. also acknowledge support for this work at DICP by the Ministry of Science & Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueming Yang or Rex T. Skodje.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harich, S., Dai, D., Wang, C. et al. Forward scattering due to slow-down of the intermediate in the H + HD → D + H2 reaction. Nature 419, 281–284 (2002). https://doi.org/10.1038/nature01068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing