Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orbital forcing of the martian polar layered deposits

Abstract

Since the first images of polar regions on Mars revealed alternating bright and dark layers, there has been speculation that their formation might be tied to the planet's orbital climate forcing1,2,3,4. But uncertainties in the deposition timescale exceed two orders of magnitude: estimates based on assumptions of dust deposition, ice formation and sublimation, and their variations with orbital forcing suggest a deposition rate of 10-3 to 10-2 cm yr-1 (refs 5, 6), whereas estimates based on cratering rate result in values as high as 0.1 to 0.2 cm yr-1 (ref. 7). Here we use a combination of high-resolution images of the polar layered terrains8, high-resolution topography9 and revised calculations of the orbital and rotational parameters of Mars to show that a correlation exists between ice-layer radiance as a function of depth (obtained from photometric data of the images of the layered terrains) and the insolation variations in summer at the martian north pole, similar to what has been shown for palaeoclimate studies of the Earth10,11,12. For the best fit between the radiance profile and the simulated insolation parameters, we obtain an average deposition rate of 0.05 cm yr-1 for the top 250 m of deposits on the ice cap of the north pole of Mars.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: North pole layered terrains.
Figure 2: Obliquity, eccentricity and insolation at the north pole surface at the summer equinox (LS = 90°).
Figure 3: Comparison of brightness profile with insolation.

References

  1. Murray, B. C. et al. Geological framework of the south polar region of Mars. Icarus 17, 328–345 (1972)

    ADS  Article  Google Scholar 

  2. Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A. & Bilski, K. The astronomical theory of climatic changes of Mars. Icarus 44, 552–607 (1980)

    ADS  Article  Google Scholar 

  3. Howard, A. D., Cutts, J. A. & Blasius, K. R. Stratigraphic relationships within martian polar-cap deposits. Icarus 50, 161–215 (1982)

    ADS  Article  Google Scholar 

  4. Cutts, J. A. & Lewis, B. H. Models of climatic cycles record in Martian polar layered deposits. Icarus 50, 216–244 (1982)

    ADS  Article  Google Scholar 

  5. Pollack, J. B. et al. Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84, 2929–2945 (1979)

    ADS  CAS  Article  Google Scholar 

  6. Kieffer, H. H. H2O grain size and the amount of dust in Mars residual north polar cap. J. Geophys. Res. 95, 1481–1493 (1990)

    ADS  Article  Google Scholar 

  7. Herkenhoff, K. & Plaut, J. J. Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus 144, 243–253 (2000)

    ADS  Article  Google Scholar 

  8. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001)

    ADS  Article  Google Scholar 

  9. Smith, D. E. et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001)

    ADS  Article  Google Scholar 

  10. Hays, J. D., Imbrie, J. & Schackleton, N. J. Variations of the Earth's orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976)

    ADS  CAS  Article  Google Scholar 

  11. Imbrie, J. et al. On the structure and origin of major glaciation cycles: 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992)

    ADS  Article  Google Scholar 

  12. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Smith, D. E., Zuber, M. T. & Neumann, G. A. Seasonal variations of snow depth of Mars. Science 294, 2141–2145 (2001)

    ADS  CAS  Article  Google Scholar 

  14. Blasius, K. R., Cutts, J. A. & Howard, A. D. Topography and statigraphy of martian polar layered deposits. Icarus 50, 140–160 (1982)

    ADS  Article  Google Scholar 

  15. Haberle, R. M. & Jakosky, B. M. Sublimation and transport of water from the north polar residual cap on Mars. J. Geophys. Res. 95, 1423–1437 (1990)

    ADS  Article  Google Scholar 

  16. Richardson, M. I. & Wilson, R. J. A topographically forced assymetry in the martian circulation and climate. Nature 416, 298–301 (2002)

    ADS  CAS  Article  Google Scholar 

  17. Jakosky, B. M., Henderson, B. G. & Mellon, M. T. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain. Icarus 102, 286–297 (1993)

    ADS  CAS  Article  Google Scholar 

  18. Cantor, B. A., James, P. B., Caplinger, M. & Wolff, M. J. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653–23687 (2001)

    ADS  Article  Google Scholar 

  19. Laskar, J. The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    ADS  Article  Google Scholar 

  20. Standish, E. M. JPL Planetary and Lunar Ephemerides, DE405/LE405. (Jet Propulsion Laboratory Inter Office Memorandum, 312.F-98-048, 1998)

  21. Folkner, W. M., Yoder, D. N., Yuan, E. M., Standish, E. M. & Preston, R. A. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997)

    ADS  CAS  Article  Google Scholar 

  22. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993)

    ADS  Article  Google Scholar 

  23. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993)

    ADS  CAS  Article  Google Scholar 

  24. Laskar, J. The limits of Earth orbital calculations for geological time scale use. Phil. Trans. R. Soc. Lond. A 357, 1735–1759 (1999)

    ADS  Article  Google Scholar 

  25. Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of the Martian climate. J. Geophys. Res. 100, 1579–1584 (1995)

    ADS  CAS  Article  Google Scholar 

  26. Thomas, P., Herkenhoff, K., Howard, A., Murray, B. & Squyres, S. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 767–795 (Univ. Arizona Press, Tucson, 1992)

    Google Scholar 

  27. Paige, D. A. & Ingersoll, P. Annual heat balance of Martian polar caps: Viking observations. Science 228, 1160–1168 (1985)

    ADS  CAS  Article  Google Scholar 

  28. Martin, L. J. & Zurek, R. W. An analysis of the history of dust storm activity on Mars. J. Geophys. Res. 98, 3221–3246 (1993)

    ADS  Article  Google Scholar 

  29. Zuber, M. T. et al. Observations of the north polar region of Mars from the Mars Orbiter Laser altimeter. Science 282, 2053–2060 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank F. Forget, A. Howard and B. Jakosky for useful discussions and suggestions, and A. Correia and M. Gastineau for their contribution to the obliquity solution. This work was supported by the CNRS-PNP and NASA Solar System Exploration programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Laskar.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laskar, J., Levrard, B. & Mustard, J. Orbital forcing of the martian polar layered deposits. Nature 419, 375–377 (2002). https://doi.org/10.1038/nature01066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01066

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing