Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robustness of the BMP morphogen gradient in Drosophila embryonic patterning


Developmental patterning relies on morphogen gradients, which generally involve feedback loops to buffer against perturbations caused by fluctuations in gene dosage and expression1. Although many gene components involved in such feedback loops have been identified, how they work together to generate a robust pattern remains unclear. Here we study the network of extracellular proteins that patterns the dorsal region of the Drosophila embryo by establishing a graded activation of the bone morphogenic protein (BMP) pathway. We find that the BMP activation gradient itself is robust to changes in gene dosage. Computational search for networks that support robustness shows that transport of the BMP class ligands (Scw and Dpp) into the dorsal midline by the BMP inhibitor Sog is the key event in this patterning process. The mechanism underlying robustness relies on the ability to store an excess of signalling molecules in a restricted spatial domain where Sog is largely absent. It requires extensive diffusion of the BMP–Sog complexes, coupled with restricted diffusion of the free ligands. We show experimentally that Dpp is widely diffusible in the presence of Sog but tightly localized in its absence, thus validating a central prediction of our theoretical study.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Robustness of the pMad activation profile.
Figure 2: Patterning mechanism emerges from the features of the robust networks.
Figure 3: Properties of the robust model.
Figure 4: Dpp diffusion requires Sog and Tsg.


  1. 1

    Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Podos, S. D. & Ferguson, E. L. Morphogen gradients: new insights from DPP. Trends. Genet. 15, 396–402 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Raftery, L. A. & Sutherland, D. J. TGF-β family signal transduction in Drosophila development: from Mad to Smads. Dev. Biol. 210, 251–268 (1999)

    CAS  Article  Google Scholar 

  4. 4

    Stein, D., Roth, S., Vogelsang, E. & Nusslein-Volhard, C. The polarity of the dorsoventral axis in the Drosophila embryo is defined by an extracellular signal. Cell 65, 725–735 (1991)

    CAS  Article  Google Scholar 

  5. 5

    DeRobertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Nguyen, M., Park, S., Marques, G. & Arora, K. Interpretation of a BMP activity gradient in Drosophila embryos depends on synergistic signaling by two type I receptors, SAX and TKV. Cell 95, 495–506 (1998)

    CAS  Article  Google Scholar 

  7. 7

    Arora, K., Levine, M. S. & O'Connor, M. B. The screw gene encodes a ubiquitously expressed member of the TGF-β family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev. 8, 2588–2601 (1994)

    CAS  Article  Google Scholar 

  8. 8

    Mason, E. D., Williams, S., Grotendorst, G. R. & Marsh, J. L. Combinatorial signaling by Twisted Gastrulation and Decapentaplegic. Mech. Dev. 64, 61–75 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Persson, U. et al. The L45 loop in type I receptors for TGF-β family members is a critical determinant in specifying Smad isoform activation. FEBS Lett. 434, 83–87 (1998)

    CAS  Article  Google Scholar 

  10. 10

    Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000)

    CAS  Article  Google Scholar 

  11. 11

    Dorfman, R. & Shilo, B.-Z. Biphasic activation of the BMP pathway in the Drosophila embryonic dorsal region. Development 128, 965–972 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Wharton, K. A., Ray, R. P. & Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Srinivasan, S., Rashka, K. E. & Bier, E. Creation of a Sog morphogen gradient in the Drosophila embryo. Dev. Cell 2, 91–101 (2002)

    CAS  Article  Google Scholar 

  14. 14

    Neul, J. L. & Ferguson, E. L. Spatially restricted activation of the SAX receptor by SCW modulates DPP/TKV signaling in Drosophila dorsal–ventral patterning. Cell 95, 483–494 (1998)

    CAS  Article  Google Scholar 

  15. 15

    Ross, J. J. et al. Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410, 479–483 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Marques, G. et al. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91, 417–426 (1997)

    CAS  Article  Google Scholar 

  17. 17

    Ashe, H. L., Mannervik, M. & Levine, M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127, 3305–3312 (2000)

    CAS  PubMed  Google Scholar 

  18. 18

    Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular biology. Nature 402, C47–C52 (1999)

    CAS  Article  Google Scholar 

  22. 22

    Kosman, D. & Small, S. Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. Development 124, 1343–1354 (1997)

    CAS  PubMed  Google Scholar 

  23. 23

    Swaminathan, R., Hoang, C. P. & Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP–S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997)

    CAS  Article  Google Scholar 

Download references


We thank P. ten Dijke for the pMad antibody; L. Marsh, M. O'Connor, S. Roth, D. St. Johnston and the Umea and Bloomington Fly Centers for strains; and S. Leibler and S. Roth for comments and criticism. This work was funded by the Israel Science Foundation (B-Z.S.) and the Israel Science Foundation and the Minerva Foundation (N.B). H.A. is a Lister Institute Research Fellow. B-Z.S. is the incumbent of the Hilda and Cecil Lewis professorial chair in Molecular Genetics. N.B. is the incumbent of the Soretta and Henry Shapiro career development chair.

Author information



Corresponding author

Correspondence to Naama Barkai.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eldar, A., Dorfman, R., Weiss, D. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing