Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The DIX domain targets dishevelled to actin stress fibres and vesicular membranes


Colorectal cancer results from mutations in components of the Wnt pathway that regulate β-catenin levels1. Dishevelled (Dvl or Dsh) signals downstream of Wnt receptors and stabilizes β-catenin during cell proliferation1 and embryonic axis formation2. Moreover, Dvl contributes to cytoskeletal reorganization during gastrulation3,4,5 and mitotic spindle orientation during asymmetric cell division6. Dvl belongs to a family of eukaryotic signalling proteins that contain a conserved 85-residue module of unknown structure and biological function called the DIX domain7. Here we show that the DIX domain mediates targeting to actin stress fibres and cytoplasmic vesicles in vivo. Neighbouring interaction sites for actin and phospholipid are identified between two helices by nuclear magnetic resonance spectroscopy (NMR). Mutation of the actin-binding motif abolishes the cytoskeletal localization of Dvl, but enhances Wnt/β-catenin signalling and axis induction in Xenopus. By contrast, mutation of the phospholipid interaction site disrupts vesicular association of Dvl, Dvl phosphorylation, and Wnt/β-catenin pathway activation. We propose that partitioning of Dvl into cytoskeletal and vesicular pools by the DIX domain represents a point of divergence in Wnt signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DIX domain associates with actin.
Figure 2: DIX domain motifs targeting actin and vesicles.
Figure 3: Cellular function of the DIX domain.
Figure 4: Biological role of the DIX domain.

Similar content being viewed by others


  1. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287, 1606–1609 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Moon, R. T. & Kimelman, D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays 20, 536–545 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000)

    CAS  PubMed  Google Scholar 

  5. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 393, 178–181 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Torres, M. A. & Nelson, W. J. Colocalization and redistribution of dishevelled and actin during Wnt-induced mesenchymal morphogenesis. J. Cell Biol. 149, 1433–1442 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pantaloni, D., Le Clainche, C. & Carlier, M. F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J. & Nusse, R. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9, 1087–1097 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. Krylova, O., Messenger, M. J. & Salinas, P. C. Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3β. J. Cell Biol. 151, 83–94 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamson, P., Paterson, H. F. & Hall, A. Intracellular localization of the P21rho proteins. J. Cell Biol. 119, 617–627 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. Smalley, M. J. et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 18, 2823–2835 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller, J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol. 3, 628–636 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Kishida, S. et al. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol. 19, 4414–4422 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, L. et al. Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 18, 4233–4240 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henry, G. D. & Sykes, B. D. Methods to study membrane protein structure in solution. Methods Enzymol. 239, 515–535 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. Yarmola, E. G., Edison, A. S., Lenox, R. H. & Bubb, M. R. Actin filament cross-linking by MARCKS: characterization of two actin-binding sites within the phosphorylation site domain. J. Biol. Chem. 276, 22351–22358 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Vancompernolle, K., Vandekerckhove, J., Bubb, M. R. & Korn, E. D. The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif. J. Biol. Chem. 266, 15427–15431 (1991)

    CAS  PubMed  Google Scholar 

  22. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fagotto, F. et al. Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J. Cell Biol. 145, 741–756 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Axelrod, J. D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters, J. M., McKay, R. M., McKay, J. P. & Graff, J. M. Casein kinase I transduces Wnt signals. Nature 401, 345–350 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Seeling, J. M. et al. Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283, 2089–2091 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Dahmen, R. P. et al. Deletions of axin1, a component of the wnt/wingless pathway, in sporadic medulloblastomas. Cancer Res. 61, 7039–7043 (2001)

    CAS  PubMed  Google Scholar 

  29. Anderson, C. W., Baum, P. R. & Gesteland, R. F. Processing of adenovirus 2-induced proteins. J. Virol. 12, 241–252 (1973)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kato, Y., Shi, Y. & He, X. Neuralization of the Xenopus embryo by inhibition of p300/CREB-binding protein function. J. Neurosci. 19, 9364–9373 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


C.V.F. conceived, executed and interpreted the immunofluorescence experiments and designed and analysed the immunoprecipitation and dephosphorylation experiments. We thank X. Chen, M. L. Dell'Acqua, L. E. Heasley, R. S. Hodges, J. E. Hooper, D. N. M. Jones, A. L. Lewellyn, J. L. Maller and A. D. Sorkin for discussions and support. This work was supported by the National Institutes of Health (M.O.) and the University of Colorado Health Sciences Center's Biophysical, DNA Sequencing, and NMR Facilities. C.V.F. received support from the Howard Hughes Medical Institute as a Research Associate. R.H. is supported by a NIH training grant, and acknowledges I. Dawid for encouragement. X.H. and M.O. are Pew Scholars and X.H. is a Keck Foundation Distinguished Young Scholar.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Overduin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capelluto, D., Kutateladze, T., Habas, R. et al. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 419, 726–729 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing