Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor

Abstract

Materials that are good electrical conductors are not in general optically transparent, yet a combination of high conductivity and transparency is desirable for many emerging opto-electronic applications1,2,3,4,5,6. To this end, various transparent oxides composed of transition or post-transition metals (such as indium tin oxide) are rendered electrically conducting by ion doping1,2,3,4,5,6. But such an approach does not work for the abundant transparent oxides of the main-group metals. Here we demonstrate a process by which the transparent insulating oxide 12CaO·7Al2O3 (refs 7–13) can be converted into an electrical conductor. H- ions are incorporated into the subnanometre-sized cages of the oxide by a thermal treatment in a hydrogen atmosphere; subsequent irradiation of the material with ultraviolet light results in a conductive state that persists after irradiation ceases. The photo-activated material exhibits moderate electrical conductivity (0.3 S cm-1) at room temperature, with visible light absorption losses of only one per cent for 200-nm-thick films. We suggest that this concept can be applied to other main-group metal oxides, for the direct optical writing of conducting wires in insulating transparent media and the formation of a high-density optical memory.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Incorporation of H- ions in C12A7.
Figure 2: Insulator–conductor conversion of C12A7:H.
Figure 3: Electronic conduction in C12A7:H.
Figure 4: F+ centre in C12A7:H.

References

  1. Ginley, D. S. & Bright, C. Transparent conducting oxides. MRS Bull. 25, 15–21 (2000)

    CAS  Article  Google Scholar 

  2. Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R160 (1986)

    ADS  CAS  Article  Google Scholar 

  3. Robertson, J. Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2 . J. Phys. C 12, 4767–4776 (1979)

    ADS  CAS  Article  Google Scholar 

  4. Kawazoe, H. et al. P-type electrical conduction in transparent thin films of CuAlO2 . Nature 389, 939–942 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Kawazoe, H., Yanagi, H., Ueda, K. & Hosono, H. Transparent p-type conducting oxides: Design and fabrication of p-n heterojunctions. MRS Bull. 25, 28–37 (2000)

    CAS  Article  Google Scholar 

  6. Thomas, G. Invisible circuit. Nature 389, 907–908 (1997)

    ADS  CAS  Article  Google Scholar 

  7. Bartl, H. & Scheller, T. Zur Struktur des 12CaO·7Al2O3 . N. Jb. Miner. Mh. 35, 547–552 (1970)

    Google Scholar 

  8. Imlach, J. A., Glasser, L. S. D. & Glasser, F. P. Excess oxygen and the stability of “12CaO·7Al2O3”. Cement Conc. Res. 1, 57–61 (1971)

    CAS  Article  Google Scholar 

  9. Jeevaratnam, J., Glasser, F. P. & Glasser, L. S. D. Anion substitution and structure of 12CaO·7Al2O3 . J. Am. Ceram. Soc. 47, 105–106 (1964)

    CAS  Article  Google Scholar 

  10. Hosono, H. & Abe, Y. Occurrence of superoxide radical ion in crystalline 12CaO·7Al2O3 prepared via solid-state reaction. Inorg. Chem. 26, 1192–1195 (1987)

    CAS  Article  Google Scholar 

  11. Hayashi, K., Hirano, M., Matsuishi, S. & Hosono, H. Microporous crystal 12CaO·7Al2O3 encaging abundant O- radicals. J. Am. Chem. Soc. 124, 738–739 (2002)

    CAS  Article  Google Scholar 

  12. Watauchi, S., Tanaka, I., Hayashi, K., Hirano, M. & Hosono, H. Crystal growth of Ca12Al14O33 by the floating zone method. J. Cryst. Growth 237, 496–502 (2002)

    ADS  Google Scholar 

  13. Li, Q.-X. et al. Absolute emission current density of O- from 12CaO·7Al2O3 . Appl. Phys. Lett. 80, 4259–4261 (2002)

    ADS  CAS  Article  Google Scholar 

  14. Henderson, B. & Wertz, J. E. Defects in the alkaline earth oxides. Adv. Phys. 17, 749–855 (1968)

    ADS  CAS  Article  Google Scholar 

  15. Agullo-Lopez, F., Catlow, C. R. A. & Townsend, P. D. Point Defects in Materials Ch. 5 (Academic, London, 1988)

    Google Scholar 

  16. Williams, R. T. & Friebele, E. J. CRC Handbook of Laser Science and Technology (ed. Weber, M. J.) Part I Vol. III (CRC, Boca Raton, FL, 1986)

    Google Scholar 

  17. Hosono, H., Asada, N. & Abe, Y. Properties and mechanism of photochromism in reduced calcium aluminate glasses. J. Appl. Phys. 67, 2840–2847 (1990)

    ADS  CAS  Article  Google Scholar 

  18. Giamello, E., Paganini, M. C., Murphy, D. M., Ferrari, A. M. & Pacchioni, G. A. Combined EPR and quantum chemical approach to the structure of surface FS+(H) centres on MgO. J. Phys. Chem. 101, 971–982 (1997)

    CAS  Article  Google Scholar 

  19. Oliver, D., Hofmann, P. & Knözinger, E. H2 chemisorption and consecutive uv stimulated surface reactions on nanostructured MgO. Phys. Chem. Chem. Phys. 1, 713–721 (1999)

    Article  Google Scholar 

  20. Hayward, M. A. et al. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7 . Science 295, 1882–1884 (2002)

    ADS  CAS  Article  Google Scholar 

  21. Mott, N. F. & Davis, E. A. Electronic Processes in Non-crystalline Materials, 2nd edn (Oxford Univ. Press, Oxford, 1979)

    Google Scholar 

  22. Weil, J. A., Bolton, J. R. & Wertz, J. E. Electron Paramagnetic Resonance (Wiley, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank I. Tanaka and S. Watauchi for growing the single crystals, S. Takeda for NMR measurements, and M. Sadakata, Q.-X. Li and T. Nishioka for TOF-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuro Hayashi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayashi, K., Matsuishi, S., Kamiya, T. et al. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature 419, 462–465 (2002). https://doi.org/10.1038/nature01053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01053

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing