Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of bacterial multidrug efflux transporter AcrB

Abstract

AcrB is a major multidrug exporter in Escherichia coli. It cooperates with a membrane fusion protein, AcrA, and an outer membrane channel, TolC. We have determined the crystal structure of AcrB at 3.5 Å resolution. Three AcrB protomers are organized as a homotrimer in the shape of a jellyfish. Each protomer is composed of a transmembrane region 50 Å thick and a 70 Å protruding headpiece. The top of the headpiece opens like a funnel, where TolC might directly dock into AcrB. A pore formed by three α-helices connects the funnel with a central cavity located at the bottom of the headpiece. The cavity has three vestibules at the side of the headpiece which lead into the periplasm. In the transmembrane region, each protomer has twelve transmembrane α-helices. The structure implies that substrates translocated from the cell interior through the transmembrane region and from the periplasm through the vestibules are collected in the central cavity and then actively transported through the pore into the TolC tunnel.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Stereo view of the experimental electron density map (2.0σ contoured, purple) of the AcrB protomer at 3.5 Å resolution.
Figure 2: Structure of AcrB.
Figure 3: The structure of a single protomer.
Figure 4: A cutaway stereo view displaying the solvent-accessible surface of AcrB rendered with GRASP45.
Figure 5: Proposed model of the AcrB–AcrA–TolC complex and the schematic mechanism of multidrug export mediated by AcrAB-TolC system.

References

  1. Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996)

    CAS  Article  Google Scholar 

  2. Ma, D., Cook, D. N., Hearst, J. E. & Nikaido, H. Efflux pumps and drug resistance in Gram-negative bacteria. Trends Microbiol. 2, 489–493 (1994)

    CAS  Article  Google Scholar 

  3. Paulsen, I. T., Nguyen, L., Sliwinski, M. K., Rabus, R. & Saier, M. H. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301, 75–100 (2000)

    CAS  Article  Google Scholar 

  4. Sulavik, M. C. et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45, 1126–1136 (2001)

    CAS  Article  Google Scholar 

  5. Tseng, T.-T. et al. The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1, 107–125 (1999)

    CAS  Google Scholar 

  6. Dinh, T., Paulsen, I. T. & Saier, M. H. Jr A family of extracytoplasmic proteins that allow transport of large molecules across the outer membrane of Gram-negative bacteria. J. Bacteriol. 176, 3825–3831 (1994)

    CAS  Article  Google Scholar 

  7. Paulsen, I. T., Park, J. H., Choi, P. S. & Saier, M. H. A family of Gram negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs, and heavy metals. FEMS Microbiol. Lett. 156, 1–8 (1997)

    CAS  Article  Google Scholar 

  8. Nikaido, H. How do exported proteins and antibiotics bypass the periplasm in Gram-negative bacterial cells? Trends Microbiol. 8, 481–483 (2000)

    CAS  Article  Google Scholar 

  9. Zguruskaya, H. I. & Nikaido, H. Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 7190–7195 (1999)

    ADS  Article  Google Scholar 

  10. Nikaido, H. & Zgurskaya, H. I. AcrAB and related multidrug efflux pumps of Escherichia coli. J. Mol. Microb. Biotechnol. 3, 215–218 (2001)

    CAS  Google Scholar 

  11. Thanassi, D. G., Cheng, L. W. & Nikaido, H. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179, 2512–2518 (1997)

    CAS  Article  Google Scholar 

  12. Fujihira, E., Tamura, N. & Yamaguchi, A. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli. J. Biochem. 131, 145–151 (2002)

    CAS  Article  Google Scholar 

  13. Zgurskaya, H. I. & Nikaido, H. AcrA is a highly asymmetric protein capable of spanning the periplasm. J. Mol. Biol. 285, 409–420 (1999)

    CAS  Article  Google Scholar 

  14. Avila-Sakar, A. J. et al. Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. J. Struct. Biol. 136, 81–88 (2001)

    CAS  Article  Google Scholar 

  15. Koronakis, V., Shaff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Poole, K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol. 3, 255–264 (2001)

    CAS  PubMed  Google Scholar 

  17. Davis, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000)

    ADS  Article  Google Scholar 

  18. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Toyoshima, T., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000)

    ADS  CAS  Article  Google Scholar 

  20. Chang, G. & Roth, C. B. Structure of MsbA from E. coli: A homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293, 1793–1800 (2001)

    ADS  CAS  Article  Google Scholar 

  21. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Williams, K. A. Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403, 112–115 (2000)

    ADS  CAS  Article  Google Scholar 

  23. Zhuang, J. et al. Two-dimensional crystallization of Escherichia coli lactose permease. J. Struct. Biol. 125, 63–75 (1999)

    CAS  Article  Google Scholar 

  24. Yin, C.-C. et al. The quaternary molecular architecture of TetA, a secondary tetracycline transporter from Escherichia coli. Mol. Microbiol. 38, 482–492 (2000)

    CAS  Article  Google Scholar 

  25. Heymann, J. A. W. et al. Projection structure and molecular architecture of OxlT, a bacterial membrane transporter. EMBO J. 20, 4408–4413 (2001)

    CAS  Article  Google Scholar 

  26. Wang, B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985)

    CAS  Article  Google Scholar 

  27. Ramakrishnan, C. & Ramachandran, G. N. Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933 (1965)

    ADS  CAS  Article  Google Scholar 

  28. Guan, L. & Nakae, T. Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa. J. Bacteriol. 183, 1734–1739 (2001)

    CAS  Article  Google Scholar 

  29. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–602 (1996)

    ADS  CAS  Article  Google Scholar 

  30. Rowsell, S. et al. Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure 5, 337–347 (1997)

    CAS  Article  Google Scholar 

  31. Srikumar, R., Li, X. Z. & Poole, K. Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J. Bacteriol. 179, 7875–7881 (1997)

    CAS  Article  Google Scholar 

  32. Mazzariol, A., Cornaglia, G. & Nikaido, H. Contributions of the AmpC beta-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to beta-lactams. Antimicrob. Agents Chemother. 44, 1387–1390 (2000)

    CAS  Article  Google Scholar 

  33. Nikaido, H., Basina, M., Nguyen, V. Y. & Rosenberg, E. Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. 180, 4686–4692 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997)

    CAS  Article  Google Scholar 

  35. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999)

    CAS  Article  Google Scholar 

  36. Otwinowski, Z. MLPHARE, CCP4 Proc. 80 (Daresbury Laboratory, Warrington, UK, 1991).

  37. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  38. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    CAS  Article  Google Scholar 

  39. Terwilliger, T. C. Reciprocal-space solvent flattening. Acta Crystallogr. D 55, 1863–1871 (1999)

    CAS  Article  Google Scholar 

  40. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  41. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  42. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    CAS  Article  Google Scholar 

  43. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  44. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    CAS  Article  Google Scholar 

  45. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Tsukihara for advice on all stages of our X-ray crystallographic analysis and critical reading of this manuscript, and M. Yoshida, H. Nikaido and E. Bibi for critical reading and discussions. We are also grateful to A. Nakagawa, M. Kusunoki and G. Kurisu for help in the diffraction data collection and computation. We thank D. Goodhew-Davison for English correction. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was done with the approval of the Joint Research Committee of Institute for Protein Research, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihito Yamaguchi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murakami, S., Nakashima, R., Yamashita, E. et al. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002). https://doi.org/10.1038/nature01050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01050

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing