Cavity solitons as pixels in semiconductor microcavities


Cavity solitons are localized intensity peaks that can form in a homogeneous background of radiation. They are generated by shining laser pulses into optical cavities that contain a nonlinear medium driven by a coherent field (holding beam). The ability to switch cavity solitons on and off1,2 and to control their location and motion3 by applying laser pulses makes them interesting as potential ‘pixels’ for reconfigurable arrays or all-optical processing units. Theoretical work on cavity solitons2,3,4,5,6,7 has stimulated a variety of experiments in macroscopic cavities8,9,10 and in systems with optical feedback11,12,13. But for practical devices, it is desirable to generate cavity solitons in semiconductor structures, which would allow fast response and miniaturization. The existence of cavity solitons in semiconductor microcavities has been predicted theoretically14,15,16,17, and precursors of cavity solitons have been observed, but clear experimental realization has been hindered by boundary-dependence of the resulting optical patterns18,19—cavity solitons should be self-confined. Here we demonstrate the generation of cavity solitons in vertical cavity semiconductor microresonators that are electrically pumped above transparency but slightly below lasing threshold20. We show that the generated optical spots can be written, erased and manipulated as objects independent of each other and of the boundary. Numerical simulations allow for a clearer interpretation of experimental results.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic experimental set-up.
Figure 2: Average intensity distribution and spatially resolved power spectra (along the lines labelled x in a and c) for the free running laser (FRL) and for the driven VCSEL.
Figure 3: Numerical simulation and theoretical interpretation of the spatial field profile.
Figure 4: Experimental demonstration of independent writing and erasing of CSs.


  1. 1

    McDonald, G. S. & Firth, W. J. Switching dynamics of spatial solitary wave pixels. J. Opt. Soc. Am. B 10, 1081–1089 (1993)

    ADS  Article  Google Scholar 

  2. 2

    Brambilla, M., Lugiato, L. A. & Stefani, M. Interaction and control of optical localized structures. Europhys. Lett. 34, 109–114 (1996)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Firth, W. J. & Scroggie, A. J. Optical bullet holes: robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76, 1623–1626 (1996)

    ADS  CAS  Article  Google Scholar 

  4. 4

    McLaughlin, D. W., Moloney, J. V. & Newell, A. C. Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity. Phys. Rev. Lett. 51, 75–78 (1983)

    ADS  Article  Google Scholar 

  5. 5

    Rosanov, N. N. & Khodova, G. V. Autosolitons in bistable interferometers. Opt. Spectrosc. 65, 449–450 (1988)

    ADS  Google Scholar 

  6. 6

    McDonald, G. S. & Firth, W. J. Spatial solitary wave optical memory. J. Opt. Soc. Am. B 7, 1328–1335 (1990)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Tlidi, M., Mandel, P. & Lefever, R. Localized structures and localized patterns in optical bistability. Phys. Rev. Lett. 73, 640–643 (1994)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Taranenko, V. B., Staliunas, K. & Weiss, C. O. Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator. Phys. Rev. A. 56, 1582–1591 (1997)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Saffman, M., Montgomery, D. & Anderson, D. Z. Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator. Opt. Lett. 19, 518–520 (1994)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Weiss, C. O., Vaupel, M., Staliunas, K., Slekys, G. & Taranenko, V. B. Solitons and vortices in lasers. Appl. Phys. B 68, 151–168 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Schreiber, A., Thuering, B., Kreuzer, M. & Tschudi, T. Experimental investigation of solitary structures in a nonlinear optical feedback system. Opt. Commun. 136, 415–418 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ramazza, P. L., Ducci, S., Boccaletti, S. & Arecchi, F. T. Localized versus delocalized patterns in a nonlinear optical interferometer. J. Opt. B 2, 399–405 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Schaepers, B., Feldmann, M., Ackemann, T. & Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 85, 748–751 (2000)

    ADS  Article  Google Scholar 

  14. 14

    Brambilla, M., Lugiato, L. A., Prati, F., Spinelli, L. & Firth, W. J. Spatial soliton pixels in semiconductor devices. Phys. Rev. Lett. 79, 2042–2045 (1997)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Michaelis, D., Peschel, U. & Lederer, F. Multistable localized structures and superlattices in semiconductor optical resonators. Phys. Rev. A 56, R3366–R3369 (1997)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Spinelli, L., Tissoni, G., Brambilla, M., Prati, F. & Lugiato, L. A. Spatial solitons in semiconductor microcavities. Phys. Rev. A 58, 2542–2559 (1998)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Spinelli, L., Tissoni, G., Tarenghi, M. & Brambilla, M. First principle theory for cavity solitons in semiconductor microresonators. Eur. Phys. J. D 15, 257–266 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Taranenko, V. B., Ganne, I., Kuszelewicz, R. & Weiss, C. O. Patterns and localized structures in bistable semiconductor resonators. Phys. Rev. A 61, 063818-5 (2000)

    ADS  Article  Google Scholar 

  19. 19

    Taranenko, V. B., Ganne, I., Kuszelewicz, R. & Weiss, C. O. Spatial solitons in a semiconductor microresonator. Appl. Phys. B 72, 377–380 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Ackemann, T. et al. Spatial structure of broad area vertical-cavity regenerative amplifiers. Opt. Lett. 25, 814–816 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Lugiato, L. A., Brambilla, M. & Gatti, A. Advances in Atomic, Molecular and Optical Physics (eds Bederson, B. and Walther, H.) Vol. 40 229–306 (Academic, Boston, 1998)

    Google Scholar 

  22. 22

    Thual, O. & Fauve, S. Localized structures generated by subcritical instabilities. J. Phys. 49, 1829–1923 (1988)

    Article  Google Scholar 

  23. 23

    Grabherr, M. et al. Bottom-emitting VCSEL's for high-CW optical output power. IEEE Photon. Tech. Lett. 10, 1061–1063 (1998)

    ADS  Article  Google Scholar 

  24. 24

    Fedorov, S. et al. Effects of spatial inhomogeneities on the dynamics of cavity solitons in quadratically nonlinear media. Phys. Rev. E 64, 036610-8 (2001)

    ADS  Article  Google Scholar 

Download references


We thank F. Capasso, P. Coullet, W. J. Firth and R. Kuszelewicz for discussions. This work was performed in the framework of the ESPRIT project PIANOS and the PRIN project ‘Formazione e controllo di solitoni di cavità in microrisonatori a semiconduttore’ of the Italian Ministry of University and Research, the contract ACI Photonique of the Ministere de l'Education et la Recherche de France, and the Project TIC99-0645-C05-02 of the Ministerio de Educación y Cultura, Spain.

Author information



Corresponding author

Correspondence to Luigi A. Lugiato.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barland, S., Tredicce, J., Brambilla, M. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing