Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum phase transition in a common metal

Abstract

The classical theory of solids, based on the quantum mechanics of single electrons moving in periodic potentials, provides an excellent description of substances ranging from semiconducting silicon to superconducting aluminium. Over the last fifteen years, it has become increasingly clear that there are substances for which the conventional approach fails. Among these are certain rare earth compounds1,2 and transition metal oxides3,4, including high-temperature superconductors5,6. A common feature of these materials is complexity, in the sense that they have relatively large unit cells containing heterogeneous mixtures of atoms. Although many explanations have been put forward for their anomalous properties7, it is still possible that the classical theory might suffice. Here we show that a very common chromium alloy has some of the same peculiarities as the more exotic materials, including a quantum critical point8, a strongly temperature-dependent Hall resistance4,5 and evidence for a ‘pseudogap’9. This implies that complexity is not a prerequisite for unconventional behaviour. Moreover, it should simplify the general task of explaining anomalous properties because chromium is a relatively simple system in which to work out in quantitative detail the consequences of the conventional theory of solids.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Magnetic ordering (Néel) temperature and zero-temperature properties of Cr1-xVx near its quantum critical point.
Figure 2: Temperature-dependent electrical properties near the quantum critical point of Cr1-xVx.
Figure 3: Electronic scattering and density of states, as measured by temperature dependence of electrical conductivity and magnetic susceptibility.

References

  1. Löhneysen, H. v. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994)

    ADS  Article  Google Scholar 

  2. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000)

    ADS  Article  Google Scholar 

  3. Varma, C. M. et al. Phenomenology of the normal state of Cu-O high temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)

    ADS  CAS  Article  Google Scholar 

  4. Rosenbaum, T. F., Husmann, A., Carter, S. A. & Honig, J. M. Temperature dependence of the Hall angle in a correlated three-dimensional metal. Phys. Rev. B 57, R13997–R13999 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Chien, T. R., Brawner, D. A., Wang, Z. Z. & Ong, N. P. Unusual 1/T3 temperature dependence of the Hall conductivity in YBa2Cu3O7-δ . Phys. Rev. B 43, 6242–6245 (1991)

    ADS  CAS  Article  Google Scholar 

  6. Grigera, S. A. et al. Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7 . Science 294, 329–332 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Allen, P. B. Superconductivity: Is kinky conventional? Nature 412, 494–495 (2001)

    ADS  Article  Google Scholar 

  8. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999)

    MATH  Google Scholar 

  9. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental overview. Rep. Prog. Phys. 62, 61–122 (1999)

    ADS  CAS  Article  Google Scholar 

  10. Aeppli, G., Mason, T. E., Hayden, S. M., Mook, H. A. & Kulda, J. Nearly singular magnetic fluctuations in the normal state of a high-Tc cuprate superconductor. Science 278, 1432–1435 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Aeppli, G. & Broholm, C. Handbook of the Physics and Chemistry of the Rare Earths Vol. 19 123–175 (Elsevier, Amsterdam, 1994)

    Google Scholar 

  12. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988)

    ADS  CAS  Article  Google Scholar 

  13. Koehler, W. C., Moon, R. M., Trego, A. I. & Mackintosh, A. R. Antiferromagnetism in Chromium Alloys. I. Neutron Diffraction. Phys. Rev. 151, 405–413 (1966)

    ADS  CAS  Article  Google Scholar 

  14. Fawcett, E., Alberts, H. V., Galkin, V. Yu., Noakes, D. R. & Yakhmi, J. V. Spin-density wave antiferromagnetism in chromium alloys. Rev. Mod. Phys. 66, 25–127 (1994)

    ADS  CAS  Article  Google Scholar 

  15. de Vries, G. The transition in chromium and in some alloys of chromium with small amounts of other transition elements. J. Phys. Rad. 20, 438–439 (1959)

    CAS  Article  Google Scholar 

  16. Takeuchi, J., Sasakura, H. & Masuda, Y. Spin fluctuations in itinerant electron antiferromagnetic Cr1-xVx system. J. Phys. Soc. Jpn 49, 508–513 (1980)

    ADS  CAS  Article  Google Scholar 

  17. Takagi, H. et al. Systematic evolution of temperature-dependent resistivity in La2-xSrxCuO4 . Phys. Rev. Lett. 69, 2975–2978 (1992)

    ADS  CAS  Article  Google Scholar 

  18. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993)

    ADS  CAS  Article  Google Scholar 

  19. Hlubina, R. & Rice, T. M. Resistivity as a function of temperature for models with hot spots on the Fermi surface. Phys. Rev. B 52, 9253–9260 (1995)

    ADS  Article  Google Scholar 

  20. Furuya, Y. Temperature and magnetic field dependence of the Hall coefficient on the antiferromagnetic chromium. J. Phys. Soc. Jpn 40, 490–497 (1976)

    ADS  CAS  Article  Google Scholar 

  21. Hirai, K. Electronic structure of sinusoidal spin density wave state in chromium. J. Phys. Soc. Jpn 62, 690–703 (1993)

    ADS  CAS  Article  Google Scholar 

  22. Laurent, D. G., Callaway, J., Fry, J. L. & Brener, N. E. Band structure, Fermi surface, Compton profile, and optical conductivity of paramagnetic chromium. Phys. Rev. B 23, 4977–4987 (1981)

    ADS  CAS  Article  Google Scholar 

  23. Staunten, J. B., Poulter, K., Ginatempo, B., Bruno, E. & Johnson, D. D. Incommensurate and commensurate antiferromagnetic spin fluctuations in Cr and Cr alloys from ab initio dynamical spin susceptibility calculations. Phys. Rev. Lett. 82, 3340–3343 (1999)

    ADS  Article  Google Scholar 

  24. Hayden, S. M., Doubble, R., Aeppli, G., Perring, T. G. & Fawcett, E. The strongly enhanced magnetic excitations near the quantum critical point of Cr1-xVx and why strong exchange enhancement need not imply heavy fermion behavior. Phys. Rev. Lett. 84, 999–1003 (2000)

    ADS  CAS  Article  Google Scholar 

  25. Basov, D. N., Singley, E. J. & Dordevic, S. V. Sum rules and electrodynamics of high-Tc cuprates in the pseudogap state. Phys. Rev. B 65, 054516 (2002)

    ADS  Article  Google Scholar 

  26. Rosch, A. Some remarks on pseudogap behavior of nearly antiferromagnetic metals. Phys. Rev. B 64, 174407 (2001)

    ADS  Article  Google Scholar 

  27. Coleman, P., Pepin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Cond. Mat. 13, R723–R738 (2001)

    ADS  CAS  Article  Google Scholar 

  28. Si, Q., Rabello, S., Ingersent, K. & Lleweilun Smith, J. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Coleman and Q. Si for discussions. The work at the University of Chicago was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Aeppli.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeh, A., Soh, YA., Brooke, J. et al. Quantum phase transition in a common metal. Nature 419, 459–462 (2002). https://doi.org/10.1038/nature01044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01044

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing