Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam

Abstract

Optical tweezers1 are commonly used for manipulating microscopic particles, with applications in cell manipulation2, colloid research3,4,5, manipulation of micromachines6 and studies of the properties of light beams7. Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams8,9, however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance10. Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (3 mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of ‘lab-on-a-chip’ and optically driven microstructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Beam propagation simulation.
Figure 2: Inverted tweezers experimental set-up.
Figure 3: Alignment of glass rods and chromosomes.
Figure 4: Arrays of 1 µm spheres.

Similar content being viewed by others

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double strained and single stranded DNA molecules. Science 271, 795–799 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for collodial studies. J. Colloid Interf. Sci. 179, 298–310 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Crocker, J. C., Matteo, J. A., Dinsmore, A. D. & Yodh, A. G. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82, 4352–4355 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Larsen, A. E. & Grier, D. G. Like charge attractions in metastable colloidal crystallites. Nature 385, 230–233 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Volke-Sepulveda, K., Garcés-Chávez, V., Chávez-Cerda, S., Arlt, J. & Dholakia, K. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B 4, 582–589 (2002)

    Article  Google Scholar 

  8. Durnin, J., Miceli, J. J. Jr & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987)

    Article  ADS  CAS  Google Scholar 

  9. McQueen, C. A., Arlt, J. & Dholakia, K. An experiment to study a “nondiffracting” light beam. Am. J. Phys. 67, 912–915 (1999)

    Article  ADS  Google Scholar 

  10. Bouchal, Z., Wagner, J. & Chlup, M. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun. 151, 207–211 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651–654 (1987)

    Article  ADS  Google Scholar 

  12. Herman, R. M. & Wiggins, T. A. Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932–942 (1991)

    Article  ADS  Google Scholar 

  13. MacDonald, R. P., Boothroyd, S. A., Okamato, T., Chrostowski, J. & Syrett, B. A. Interboard optical data distribution by Bessel beam shadowing. Opt. Commun. 122, 169–177 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Chávez-Cerda, S. et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. B 4, S52–S57 (2002)

    Article  Google Scholar 

  15. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Arlt, J., Garcés-Chávez, V., Sibbett, W. & Dholakia, K. Optical micro-manipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Alignment or spinning of laser-trapped microscopic waveplates. Nature 394, 348–350 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001)

    Article  ADS  CAS  Google Scholar 

  19. MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Korda, P., Spalding, G. C., Dufresne, E. R. & Grier, D. G. Nanofabrication with holographic optical tweezers. Rev. Sci. Instrum. 73, 1956–1957 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Spalding for discussions. This work was supported by the Leverhulme Trust, the UK Engineering and Physical Sciences Research Council and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dholakia.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcés-Chávez, V., McGloin, D., Melville, H. et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002). https://doi.org/10.1038/nature01007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01007

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing