Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

T-cell engagement of dendritic cells rapidly rearranges MHC class II transport

Abstract

Assembly of major histocompatibility complex (MHC) molecules, which present antigen in the form of short peptides to T lymphocytes, occurs in the endoplasmic reticulum; once assembled, these molecules travel from the endoplasmic reticulum to their final destination. MHC class II molecules follow a route that takes them by means of the endocytic pathway, where they acquire peptide, to the cell surface1. The transport of MHC class II molecules in ‘professional’ antigen-presenting cells (APCs) is subject to tight control and responds to inflammatory stimuli such as lipopolysaccharide. To study class II transport in live APCs, we replaced the mouse MHC class II gene with a version that codes for a class II molecule tagged with enhanced green fluorescent protein (EGFP). The resulting mice are immunologically indistinguishable from wild type. In bone-marrow-derived dendritic cells, we observed class II molecules in late endocytic structures with transport patterns similar to those in Langerhans cells observed in situ. We show that tubular endosomes extend intracellularly and polarize towards the interacting T cell, but only when antigen-laden dendritic cells encounter T cells of the appropriate specificity. We propose that such tubulation serves to facilitate the ensuing T-cell response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of MHC II-EGFP knock-in mice.
Figure 2: MHC II-EGFP molecules in dendritic cells reside in late endosomes.
Figure 3: Transport of MHC II-EGFP-containing structures in Langerhans cells in situ.
Figure 4: Microtubule-driven directional transport of endosomal compartments on T-cell contact.
Figure 5: Primary T cells induce tubulation in dendritic cells in an antigen-dependent manner.

Similar content being viewed by others

References

  1. Villadangos, J. A. et al. Proteases involved in MHC class II antigen presentation. Immunol. Rev. 172, 109–120 (1999)

    Article  CAS  Google Scholar 

  2. Cosgrove, D. et al. Mice lacking MHC class II molecules. Cell 66, 1051–1066 (1991)

    Article  CAS  Google Scholar 

  3. Grusby, M. J., Johnson, R. S., Papaioannou, V. E. & Glimcher, L. H. Depletion of CD4 + T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986)

    Article  ADS  CAS  Google Scholar 

  5. Wubbolts, R. et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 135, 611–622 (1996)

    Article  CAS  Google Scholar 

  6. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001)

    Article  CAS  Google Scholar 

  7. Rowden, G. The Langerhans cell. Crit. Rev. Immunol. 3, 95–180 (1981)

    CAS  PubMed  Google Scholar 

  8. Maric, M. et al. Defective antigen processing in GILT-free mice. Science 294, 1361–1365 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Hugo, P., Kappler, J. W., Godfrey, D. I. & Marrack, P. C. A cell line that can induce thymocyte positive selection. Nature 360, 679–682 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Malissen, B., Steinmetz, M., McMillan, M., Pierres, M. & Hood, L. Expression of I-Ak class II genes in mouse L cells after DNA-mediated gene transfer. Nature 305, 440–443 (1983)

    Article  ADS  CAS  Google Scholar 

  11. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999)

    Article  CAS  Google Scholar 

  13. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Underhill, D. M., Bassetti, M., Rudensky, A. & Aderem, A. Dynamic interactions of macrophages with T cells during antigen presentation. J. Exp. Med. 190, 1909–1914 (1999)

    Article  CAS  Google Scholar 

  15. Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000)

    Article  CAS  Google Scholar 

  16. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001)

    Article  CAS  Google Scholar 

  17. Scholl, P. R. & Geha, R. S. MHC class II signalling in B-cell activation. Immunol. Today 15, 418–422 (1994)

    Article  CAS  Google Scholar 

  18. Mathis, D. J., Benoist, C., Williams, V. E., Kanter, M. & McDevitt, H. O. Several mechanisms can account for defective Eα gene expression in different mouse haplotypes. Proc. Natl Acad. Sci. USA 80, 273–277 (1983)

    Article  ADS  CAS  Google Scholar 

  19. Villadangos, J. A., Riese, R. J., Peters, C., Chapman, H. A. & Ploegh, H. L. Degradation of mouse invariant chain: roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J. Exp. Med. 186, 549–560 (1997)

    Article  CAS  Google Scholar 

  20. Villadangos, J. A. et al. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity 14, 739–749 (2001)

    Article  CAS  Google Scholar 

  21. Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998)

    Article  CAS  Google Scholar 

  22. Turley, S. J. et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288, 522–527 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Boxem for help in designing the targeting construct and T. Schmidt for blastocyst microinjections. We thank A. W. M. van der Velden for providing DsRed1-labelled S. typhimurium, and we acknowledge discussions with members of the Ploegh laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidde L. Ploegh.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boes, M., Cerny, J., Massol, R. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002). https://doi.org/10.1038/nature01004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01004

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing