Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites

Abstract

Determining the chronology for the assembly of planetary bodies in the early Solar System is essential for a complete understanding of star- and planet-formation processes. Various radionuclide chronometers (applied to meteorites) have been used to determine that basaltic lava flows on the surface of the asteroid Vesta formed within 3 million years (3 Myr) of the origin of the Solar System1,2,3. Such rapid formation is broadly consistent with astronomical observations of young stellar objects, which suggest that formation of planetary systems occurs within a few million years after star formation4,5. Some hafnium–tungsten isotope data, however, require that Vesta formed later6 (16 Myr after the formation of the Solar System) and that the formation of the terrestrial planets took a much longer time7,8,9,10 (62-14+4504 Myr). Here we report measurements of tungsten isotope compositions and hafnium–tungsten ratios of several meteorites. Our measurements indicate that, contrary to previous results7,8,9,10, the bulk of metal–silicate separation in the Solar System was completed within <30 Myr. These results are completely consistent with other evidence for rapid planetary formation1,2,3,4,5, and are also in agreement with dynamic accretion models11,12,13 that predict a relatively short time (10 Myr) for the main growth stage of terrestrial planet formation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hf–W systematics for the early Solar System.
Figure 2: Models for timing of core formation in the Earth.

References

  1. Lugmair, G. & Shukolyukov, A. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998)

    Article  CAS  ADS  Google Scholar 

  2. Srinivasan, G., Papanastassiou, D. A., Wasserburg, G. J., Bhandari, N. & Goswami, J. N. Re-examination of 26Al-26Mg systematics in the Piplia Kalan eucrite. Lunar Planet. Sci. XXXI, A1795 (2000)

    ADS  Google Scholar 

  3. Nyquist, L. E., Reese, Y., Wiesmann, H., Shih, C.-Y. & Takeda, H. Live 53Mn and 26Al in an unique cumulate eucrite with very calcic feldspar (An 98). Meteor. Planet. Sci. Suppl. 36, A151–A152 (2001)

    Google Scholar 

  4. Briceño, C. et al. The CIDA-QUEST large-scale survey of Orion OB1: Evidence for rapid disk dissipation in a dispersed stellar population. Science 291, 93–96 (2001)

    Article  ADS  Google Scholar 

  5. Bodenheimer, P. & Lin, D. N. C. Implications of extrasolar planets for understanding planet formation. Annu. Rev. Earth Planet. Sci. 30, 113–148 (2002)

    Article  CAS  ADS  Google Scholar 

  6. Quitté, G., Birck, J.-L. & Allègre, C. J. 182Hf-182W systematics in eucrites: the puzzle of iron segregation in the early solar system. Earth Planet. Sci. Lett. 184, 83–94 (2000)

    Article  ADS  Google Scholar 

  7. Lee, D.-C. & Halliday, A. N. Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature 378, 771–774 (1995)

    Article  CAS  ADS  Google Scholar 

  8. Lee, D.-C. & Halliday, A. N. Hf-W isotopic evidence for rapid accretion and differentiation in the early solar system. Science 274, 1876–1879 (1996)

    Article  CAS  ADS  Google Scholar 

  9. Lee, D.-C., Halliday, A. N., Snyder, G. A. & Taylor, L. A. Age and origin of the Moon. Science 278, 1098–1103 (1997)

    Article  CAS  ADS  Google Scholar 

  10. Halliday, A. N., Rehkämper, M., Lee, D.-C. & Yi, W. Early evolution of the Earth and Moon: new constraints from Hf-W isotope geochemistry. Earth Planet. Sci. Lett. 142, 75–89 (1996)

    Article  CAS  ADS  Google Scholar 

  11. Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–550 (Lunar and Planetary Institute, Houston, 1986)

    Google Scholar 

  12. Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001)

    Article  ADS  Google Scholar 

  13. Kortenkamp, S. J., Wetherill, G. W. & Inaba, S. Runaway growth of planetary embryos facilitated by massive bodies in a protoplanetary disk. Science 293, 1127–1129 (2001)

    Article  CAS  ADS  Google Scholar 

  14. Jacobsen, S. B. & Harper, C. L. Jr in Earth Processes: Reading the Isotopic Code Geophys. Monogr. 95 (eds Basu, A. & Hart, S.) 47–74 (American Geophysical Union, Washington DC, 1996)

    Google Scholar 

  15. Harper, C. L. Jr & Jacobsen, S. B. Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 1131–1153 (1996)

    Article  CAS  ADS  Google Scholar 

  16. Jacobsen, S. B. & Yin, Q.-Z. W isotope variations and the time of formation of asteroidal cores and the Earth's core. Lunar Planet. Sci. XXIX, 1852–1853 (1998)

    ADS  Google Scholar 

  17. Horan, M. F., Smoliar, M. I. & Walker, R. J. 182W and 187Re-187Os systematics of iron meteorites: chronology for melting, differentiation, and crystallization in asteroids. Geochim. Cosmochim. Acta 62, 545–554 (1998)

    Article  CAS  ADS  Google Scholar 

  18. Lee, D.-C. & Halliday, A. N. Hf-W internal isochrons for ordinary chondrites and the initial 182Hf/180Hf of the solar system. Chem Geol. 169, 35–43 (2000)

    Article  CAS  ADS  Google Scholar 

  19. Lee, D.-C. & Halliday, A. N. Accretion of primitive planetesimals: Hf-W isotopic evidence from enstatite chondrites. Science 288, 1629–1631 (2000)

    Article  CAS  ADS  Google Scholar 

  20. Halliday, A. N., Lee, D.-C. & Jacobsen, S. B. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 45–62 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  21. Harper, C. & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814–1818 (1996)

    Article  CAS  ADS  Google Scholar 

  22. Porcelli, D., Woolum, D. & Cassen, P. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    Article  CAS  ADS  Google Scholar 

  23. Cameron, A. G. W. From interstellar gas to the Earth-Moon system. Meteorit. Planet. Sci. 36, 9–22 (2001)

    Article  CAS  ADS  Google Scholar 

  24. Yin, Q.-Z. et al. New Hf-W data that are consistent with Mn-Cr chronology: implications for early solar system evolution. Lunar Planet. Sci. XXXIII, A1700 (2002)

    ADS  Google Scholar 

  25. Palme, H. & Rammensee, W. The significance of W in planetary differentiation processes: Evidence from new data on eucrites. Proc. Lunar Planet. Sci. Conf. B 12, 949–964 (1981)

    ADS  Google Scholar 

  26. Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature 416, 39–44 (2002)

    Article  CAS  ADS  Google Scholar 

  27. Lee, D.-C., Halliday, A. N., Leya, I., Wieler, R. & Wiechert, U. Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet. Sci Lett. 198, 267–274 (2002)

    Article  CAS  ADS  Google Scholar 

  28. Rammensee, W. & Wänke, H. On the partition coefficient of tungsten between metal and silicate and its bearing on the origin of the moon. Proc. Lunar Sci. Conf. 8, 399–409 (1977)

    CAS  ADS  Google Scholar 

  29. Humayun, M. & Campbell, A. J. The duration of ordinary chondrite metamorphism inferred from tungsten microdistribution in metal. Earth Planet. Sci Lett. 198, 225–243 (2002)

    Article  CAS  ADS  Google Scholar 

  30. Ireland, T. R., Kirby, H., Bukovanska, M. & Wlotzka, F. Hf-W systematics of meteoritic zircons, revisited. Lunar Planet. Sci. XXXI, A1540 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the Smithsonian Institution, Harvard Mineralogical Museum, U. Marvin and H. Palme for providing the samples, and A. N. Halliday and D.-C. Lee for comments on this paper. This work was supported by NASA's Cosmochemistry and Origin of Solar System programmes and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhu Yin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yin, Q., Jacobsen, S., Yamashita, K. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002). https://doi.org/10.1038/nature00995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00995

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing