Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry

Abstract

The timescales and mechanisms for the formation and chemical differentiation of the planets can be quantified using the radioactive decay of short-lived isotopes1,2,3,4,5,6,7,8,9,10. Of these, the 182Hf-to-182W decay is ideally suited for dating core formation in planetary bodies1,2,3,4,5. In an earlier study, the W isotope composition1 of the Earth's mantle was used to infer that core formation was late1 (≥60 million years after the beginning of the Solar System) and that accretion was a protracted process11,12. The correct interpretation of Hf–W data depends, however, on accurate knowledge of the initial abundance of 182Hf in the Solar System and the W isotope composition of chondritic meteorites. Here we report Hf–W data for carbonaceous and H chondrite meteorites that lead to timescales of accretion and core formation significantly different from those calculated previously1,3,5,11,12. The revised ages for Vesta, Mars and Earth indicate rapid accretion, and show that the timescale for core formation decreases with decreasing size of the planet. We conclude that core formation in the terrestrial planets and the formation of the Moon must have occurred during the first 30 million years of the life of the Solar System.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ɛw values of carbonaceous chondrites compared with those of the Toluca iron meteorite and terrestrial samples analysed in this study.
Figure 2: ɛw versus 180Hf/184W for different fractions of the H chondrites Ste Marguerite (a) and Forest Vale (b).
Figure 3: Time of core formation in Myr after CAI condensation for Vesta, Mars, Earth and Moon versus planet radius as deduced from Hf–W systematics.

References

  1. Lee, D. C. & Halliday, A. N. Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature 378, 771–774 (1995)

    ADS  CAS  Article  Google Scholar 

  2. Harper, C. L. & Jacobsen, S. B. Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 1131–1153 (1996)

    ADS  CAS  Article  Google Scholar 

  3. Lee, D. C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Horan, M. F., Smoliar, M. I. & Walker, R. J. 182W and 187Re-187Os systematics of iron meteorites: Chronology for melting, differentiation, and crystallization in asteroids. Geochim. Cosmochim. Acta 62, 545–554 (1998)

    ADS  CAS  Article  Google Scholar 

  5. Quitté, G., Birck, J. L. & Allègre, C. J. 182Hf/180Hf systematics in eucrites: the puzzle of iron segregation in the early solar system. Earth Planet. Sci. Lett. 184, 83–94 (2000)

    ADS  Article  Google Scholar 

  6. Lugmair, G. W. & Shukolyukov, A. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998)

    ADS  CAS  Article  Google Scholar 

  7. Shukolyukov, A. & Lugmair, G. W. 60Fe in eucrites. Earth Planet. Sci. Lett. 119, 159–166 (1993)

    ADS  CAS  Article  Google Scholar 

  8. Srinivasan, G., Goswami, J. & Bhandari, N. 26Al in eucrite Piplia Kalan: plausible heat source and formation chronology. Science 284, 1348–1350 (1999)

    ADS  CAS  Article  Google Scholar 

  9. Chen, J. H. & Wasserburg, G. J. The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets. Geochim. Cosmochim. Acta 54, 1729–1743 (1990)

    ADS  CAS  Article  Google Scholar 

  10. Carlson, R. W. & Hauri, E. H. Extending the 107Pd-107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochim. Cosmochim. Acta 65, 1839–1848 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Halliday, A. N. & Lee, D. C. Tungsten isotopes and the early development of the earth and the moon. Geochim. Cosmochim. Acta 63, 4157–4179 (1999)

    ADS  CAS  Article  Google Scholar 

  12. Shearer, C. K. & Newsom, H. E. W-Hf isotope abundances and the early origin and evolution of the Earth-Moon system. Geochim. Cosmochim. Acta 64, 3599–3613 (2000)

    ADS  CAS  Article  Google Scholar 

  13. Lee, D. C. & Halliday, A. N. Accretion of primitive planetesimals: Hf-W isotopic evidence from enstatite chondrites. Science 288, 1629–1631 (2000)

    ADS  CAS  Article  Google Scholar 

  14. Göpel, C., Manhès, G. & Allègre, C. J. U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett. 121, 153–171 (1994)

    ADS  Article  Google Scholar 

  15. Allègre, C. J., Manhès, G. & Göpel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995)

    ADS  Article  Google Scholar 

  16. Yin, Q. et al. New Hf-W data that are consistent with Mn-Cr chronology: implications for early solar system evolution. Lunar Planet. Sci. XXXIII, 1700 (2002)

    ADS  Google Scholar 

  17. Ireland, T. R., Kirby, H., Bukovanska, M. & Wlotzka, F. Hf-W systematics of meteoritic zircons, revisited. Lunar Planet. Sci. XXXI, 1540 (2000)

    ADS  Google Scholar 

  18. Lee, D. C. & Halliday, A. N. Hf-W internal isochrons for ordinary chondrites and the initial 182Hf/180Hf of the solar system. Chem. Geol. 169, 35–43 (2000)

    ADS  CAS  Article  Google Scholar 

  19. Lee, D. C. & Halliday, A. N. Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet. Sci. Lett. 198, 267–274 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Binzel, R. P. & Xu, S. Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993)

    ADS  CAS  Article  Google Scholar 

  21. Palme, H. & Rammensee, W. The significance of W in planetary differentiation processes: Evidence from new data on eucrites. Lunar Planet. Sci. XXII, 949–964 (1981)

    ADS  Google Scholar 

  22. Palme, H. & Beer, H. in Landolt-Börnstein Group VI, Astronomy and Astrophysics Vol. 3a, Instruments; Methods; Solar System (ed. Voigt, H. H.) 196–221 (Springer, Berlin, 1993)

    Google Scholar 

  23. Kong, P., Ebihara, M. & Palme, H. Siderophile elements in Martian meteorites and implications for core formation in Mars. Geochim. Cosmochim. Acta 63, 1865–1875 (1999)

    ADS  CAS  Article  Google Scholar 

  24. Newsom, H. E. et al. The depletion of tungsten in the bulk silicate earth: Constraints on core formation. Geochim. Cosmochim. Acta 60, 1155–1169 (1996)

    ADS  CAS  Article  Google Scholar 

  25. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  26. Wetherill, G. W. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990)

    ADS  Article  Google Scholar 

  27. Canup, R. M. & Agnor, C. in Origin of Earth and Moon (eds Canup, R. M. & Righter, K.) 1839–1848 (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  28. Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001)

    ADS  Article  Google Scholar 

  29. Münker, C., Weyer, S., Scherer, E. & Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, 2001GC000183 (2001)

  30. Schoenberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta (in the press)

Download references

Acknowledgements

We thank the Muséum National d'Histoire Naturelle (Paris) for providing the meteorites Ste Marguerite and Forest Vale, the MPI Mainz for the carbonaceous chondrites, E. Scherer for discussions, and M. Drake, A. Halliday and D. Papanastassiou for comments and suggestions. This work was supported by the Deutsche Forschungsgemeinschaft as part of the research priority programme ‘Mars and the terrestrial planets’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kleine.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kleine, T., Münker, C., Mezger, K. et al. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002). https://doi.org/10.1038/nature00982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00982

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing