Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allowed and forbidden transitions in artificial hydrogen and helium atoms


The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons1. Experiments have shown2,3,4,5 similar electron occupation of the quantized energy levels in semiconductor quantum dots—often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material6. Here we report electrical pump-and-probe experiments that probe the allowed and ‘forbidden’ transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200?µs for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artificial hydrogen and helium atoms.
Figure 2: Relaxation time of a one-electron QD (artificial hydrogen atom).
Figure 3: Relaxation time of a two-electron QD (artificial helium atom).

Similar content being viewed by others


  1. Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957)

    Book  Google Scholar 

  2. Kouwenhoven, L. P., et al. in Mesoscopic Electron Transport NATO ASI series E 345 (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Kluwer, Dordrecht, 1997)

    Book  Google Scholar 

  3. Ashoori, R. C. et al. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088–3091 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J. & Kouwenhoven, L. P. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Kouwenhoven, L. P. et al. Excitation spectra of circular, few-electron quantum dots. Science 278, 1788–1792 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Fujisawa, T. et al. Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Tokura, Y., Sasaki, S., Austing, D. G. & Tarucha, S. Excitation spectra and exchange interactions in circular and elliptical quantum dots. Physica B 298, 260–264 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Matagne, P., Leburton, J. P., Austing, D. G. & Tarucha, S. Shell charging and spin-filling sequences in realistic vertical quantum dots. Phys. Rev. B 65, 085325 (2002)

    Article  ADS  Google Scholar 

  9. Fujisawa, T., Tokura, Y. & Hirayama, Y. Transient current spectroscopy of a quantum dot in the Coulomb blockade regime. Phys. Rev. B 63, 081304 (2001)

    Article  ADS  Google Scholar 

  10. Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y. & Tarucha, S. Non-equilibrium transport through a vertical quantum dot in the absence of spin-flip energy relaxation. Phys. Rev. Lett. 88, 236802 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Benisty, H., Sotomayer-Torres, C. M. & Weisbuch, C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44, 10945–10948 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Seeger, K. Semiconductor Physics: An Introduction 153–213 (Springer, Berlin, 1985)

    Google Scholar 

  13. Bockelmann, U. Phonon scattering between zero-dimensional electronic states: Spatial versus Landau quantization. Phys. Rev. B 50, 17271–17279 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Averin, D. V. & Nazarov, Yu. V. in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (eds Grabert, H. & Devoret, M. H.) 217–247 (Plenum and NATO Scientific Affairs Division, New York, 1992)

    Book  Google Scholar 

  15. Eto, M. Electronic states and transport phenomena in quantum dot systems. Jpn J. Appl. Phys. 1 40, 1929–1935 (2001)

    Article  CAS  Google Scholar 

  16. Sukhorukov, E. V., Burkard, G., Loss, D. . Phys. Rev. B 63, 125315 (2001)

    Article  ADS  Google Scholar 

  17. De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Pikus, G. E. & Titkov, A. N. in Optical Orientation (eds Meier, F. & Zakharchenya, B. P.) 73–131 (Elsevier, Amsterdam, 1984)

    Book  Google Scholar 

  19. Khaetskii, A. V. & Nazarov, Yu. V. Spin relaxation in semiconductor quantum dots. Phys. Rev. B 61, 12639–12642 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986)

    Article  ADS  CAS  Google Scholar 

  21. Bychkov, Yu. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984)

    ADS  Google Scholar 

  22. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Recher, P., Sukhorukov, E. V. & Loss, D. Quantum dot as spin filter and spin memory. Phys. Rev. Lett. 85, 1962–1965 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Ciorga, M. et al. Readout of a single electron spin based quantum bit by current detection. Physica E 11, 35–40 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Seck, M., Potemski, M. & Wyder, P. High-field spin resonance of weakly bound electrons in GaAs. Phys. Rev. B 56, 7422–7427 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Kavokin, K. V. Anisotropic exchange interaction of localized conduction-band electrons in semiconductors. Phys. Rev. B 64, 075305 (2001)

    Article  ADS  Google Scholar 

Download references


We thank G. E. W. Bauer, T. Honda, T. Inoshita, A. V. Khaetskii and L. P. Kouwenhoven for discussions and help.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Toshimasa Fujisawa.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisawa, T., Austing, D., Tokura, Y. et al. Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature 419, 278–281 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing