Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergent excitations in a geometrically frustrated magnet

Abstract

Frustrated systems are ubiquitous1,2,3, and they are interesting because their behaviour is difficult to predict; frustration can lead to macroscopic degeneracies and qualitatively new states of matter. Magnetic systems offer good examples in the form of spin lattices, where all interactions between spins cannot be simultaneously satisfied4. Here we report how unusual composite spin degrees of freedom can emerge from frustrated magnetic interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops, whose directors—the unique direction along which the spins are aligned, parallel or antiparallel—govern all low-temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering; the data show that neutrons scatter from hexagonal spin clusters rather than individual spins. The hexagon directors are, to a first approximation, decoupled from each other, and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Lowest-energy spin configurations for four antiferromagnetically interacting spins on a square, a tetrahedron, and the pyrochlore lattice of corner-sharing tetrahedra.
Figure 2: Temperature dependence of the inverse correlation length, κ(T) = ξ(T)-1.
Figure 3: Wavevector dependence of the inelastic neutron scattering cross-section for ZnCr2O4.
Figure 4: Possible spin fluctuations in the classical ground-state manifold.

References

  1. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Wolynes, P. G. & Eaton, W. A. The physics of protein folding. Phys. World 12, 39–44 (1999)

    Article  CAS  Google Scholar 

  3. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Ramirez, A. P. in Handbook on Magnetic Materials (ed. Busch, K. J. H.) Vol. 13, 423–520 (Elsevier Science, Amsterdam, 2001)

    Google Scholar 

  5. Moessner, R. & Chalker, J. T. Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet. Phys. Rev. Lett. 80, 2929–2932 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Canals, B. & Lacroix, C. Pyrochlore antiferromagnet: a three-dimensional quantum spin liquid. Phys. Rev. Lett. 80, 2933–2936 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999)

    Article  MathSciNet  CAS  Google Scholar 

  8. Laughlin, R. B. & Pines, D. The theory of everything. Proc. Natl Acad. Sci. USA 97, 28–31 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Lovesey, S. W. Theory of Thermal Neutron Scattering from Condensed Matter (Clarendon, Oxford, 1984)

    Google Scholar 

  10. Birgeneau, R. J. et al. Instantaneous spin correlations in La2CuO4 . Phys. Rev. B 59, 13788–13794 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Lee, S.-H. et al. Spin-glass and non-spin-glass features of a geometrically frustrated magnet. Europhys. Lett. 35, 127–132 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Moessner, R. & Chalker, J. T. Low-temperature properties of classical, geometrically frustrated antiferromagnets. Phys. Rev. B 58, 12049–12062 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Lee, S.-H., Broholm, C., Kim, T. H., Ratcliff, W. & Cheong, S-W. Local spin resonance and spin-Peierls-like phase transition in a geometrically frustrated antiferromagnet. Phys. Rev. Lett. 84, 3718–3721 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Moessner, R. & Berlinsky, A. J. Magnetic susceptibility of diluted pyrochlore and SrCr9-9xGa3+9xO19 . Phys. Rev. Lett. 83, 3293–3296 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Garcia-Adeva, A. J. & Huber, D. L. Quantum tetrahedral mean-field theory of the pyrochlore lattice. Can. J. Phys. 79, 1359–1364 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Mekata, M. & Yamada, Y. Magnetic-ordering process in SrCr9(Ga-In)3O19 . Can. J. Phys. 79, 1421–1426 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Uemura, Y. J. et al. Spin fluctuations in frustrated kagomé lattice system SrCr8Ga4O19 studied by muon spin relaxation. Phys. Rev. Lett. 73, 3306–3309 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Ramirez, A. P., Espinosa, G. P. & Cooper, A. S. Elementary excitations in a diluted antiferromagnetic kagomé lattice. Phys. Rev. B 45, 2505–2508 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Broholm, C., Aeppli, G., Espinosa, G. P. & Cooper, A. S. Antiferromagnetic fluctuations and short range order in a kagomé lattice. Phys. Rev. Lett. 65, 3173–3716 (1990)

    Article  ADS  CAS  Google Scholar 

  20. Pande, V. S., Grosberg, A. Yu. & Tanaka, T. Heteropolymer freezing and design: Towards physical models of protein folding. Rev. Mod. Phys. 72, 259–314 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Tchernyshyov, R. Moessner, S. L. Sondhi, A. B. Harris, G. Aeppli, N. Read and D. Weitz for discussions, J. J. Rush, A. P. Ramirez and P. M. Gehring for critical reading of the manuscript, and Z. Huang for assistance in making figures. This work was partially supported by the NSF and the BSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-H. Lee.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Broholm, C., Ratcliff, W. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002). https://doi.org/10.1038/nature00964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00964

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing