Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A wind origin for Titan's haze structure

Abstract

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a dense atmosphere. Titan's atmosphere is mainly nitrogen with a surface pressure of 1.5 atmospheres and a temperature of 95 K (ref. 1). A seasonally varying2 haze, which appears to be the main source of heating and cooling that drives atmospheric circulation3,4, shrouds the moon. The haze has numerous features that have remained unexplained. There are several layers5, including a ‘polar hood’6,7,8, and a pronounced hemispheric asymmetry2. The upper atmosphere rotates much faster than the surface of the moon9,10, and there is a significant latitudinal temperature asymmetry at the equinoxes11,12. Here we describe a numerical simulation of Titan's atmosphere, which appears to explain the observed features of the haze. The critical new factor in our model is the coupling of haze formation with atmospheric dynamics, which includes a component of strong positive feedback between the haze and the winds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional planetary distribution of haze scaled extinction.
Figure 2: Comparison of the reflected intensity north–south profile between observation and model.
Figure 3: Comparison of latitudinal temperature profiles between observation and model.
Figure 4: Comparison of latitudinal zonal wind profiles between observation and model.

Similar content being viewed by others

References

  1. Lellouch, E. et al. Titan's atmosphere and hypothesis ocean: a re-analysis of the Voyager 1 radio-occultation and IRIS 7.7-μm data. Icarus 79, 328–349 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Sromovsky, L. A. et al. Implication of Titan's north-south brightness asymmetry. Nature 292, 698–702 (1981)

    Article  ADS  Google Scholar 

  3. Hourdin, F. et al. Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117, 358–374 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Tokano, T., Neubauer, F. M., Laube, M. & McKay, C. P. Seasonal variation of Titan's atmospheric structure simulated by a general circulation model. Icarus 47, 493–520 (1999)

    CAS  Google Scholar 

  5. Rages, K. & Pollack, J. B. Vertical distribution of scattering haze in Titan's upper atmosphere. Icarus 55, 50–62 (1983)

    Article  ADS  Google Scholar 

  6. Young, E. F., Rannou, P., McKay, C. P., Griffith, C. A. & Noll, K. A three dimensional map of Titan's tropospheric haze distribution based on HST imaging. Astron. J. 123, 3473–3486 (2002)

    Article  ADS  Google Scholar 

  7. Samuelson, R. E., Mayo, L. A., Knuckles, M. A. & Khanna, R. J. C4N2 ice in Titan's north polar stratosphere. Planet. Space. Sci. 45, 941–948 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Coustenis, A. et al. Images of Titan at 1.3 and 1.6 micron with adaptative optics at the CFHT. Icarus 154, 501–515 (2002)

    Article  ADS  Google Scholar 

  9. Hubbard, W. B. et al. The occultation of 28 Sgr by Titan. Astron. Astrophys. 269, 541–563 (1993)

    ADS  Google Scholar 

  10. Kostiuk, T. et al. Direct measurement of winds on Titan. Geophys. Res. Lett. 28, 2361–2364 (2001)

    Article  ADS  Google Scholar 

  11. Flasar, F. H. & Conrath, B. J. Titan's stratospheric temperatures: A case for dynamical inertia? Icarus 85, 346–654 (1990)

    Article  ADS  Google Scholar 

  12. Coustenis, A. & Bézard, B. Titan's atmosphere from Voyager infrared observations: IV. Latitudinal variations of temperature and composition. Icarus 115, 126–140 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Maguire, W. C., Hanel, R. A., Jennings, D. E., Kunde, V. G. & Samuelson, R. E. C3H8 and C3H4 in Titan's atmosphere. Nature 292, 683–686 (1981)

    Article  ADS  CAS  Google Scholar 

  14. Kunde, V. G. et al. C4H2, HC3N, and C2N2 in Titan's atmosphere. Nature 292, 686–688 (1981)

    Article  ADS  CAS  Google Scholar 

  15. Khare, B. N. et al. Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984)

    Article  ADS  CAS  Google Scholar 

  16. McKay, C. P., Pollack, J. B. & Courtin, R. The thermal structure of Titan's atmosphere. Icarus 80, 23–53 (1989)

    Article  ADS  CAS  Google Scholar 

  17. Danielson, R. E., Caldwell, J. J. & Larach, D. R. An inversion in the atmosphere of Titan. Icarus 20, 437–443 (1973)

    Article  ADS  CAS  Google Scholar 

  18. McKay, C. P., Pollack, J. B. & Courtin, R. The greenhouse and antigreenhouse effects on Titan. Science 253, 1118–1123 (1991)

    Article  ADS  CAS  Google Scholar 

  19. Hutzell, W. T., McKay, C. P. & Toon, O. B. Effects of the time-varying haze production on Titan's geometric albedo. Icarus 105, 162–174 (1993)

    Article  ADS  Google Scholar 

  20. Pollack, J. B., Rages, K., Toon, O. B. & Yung, Y. L. On the relationship between secular brightness changes of Titan and solar variability. Geophys. Res. Lett. 7, 829–832 (1980)

    Article  ADS  Google Scholar 

  21. Allen, M., Pinto, J. P. & Yung, Y. L. Titan: aerosol photochemistry and variations related to sunspot cycle. Astrophys. J. 242, L125–L128 (1980)

    Article  ADS  CAS  Google Scholar 

  22. Rannou, P., Cabane, M. & Chassefière, E. Growth of aerosols in Titan's atmosphere and related time scales: A stochastic approach. Geophys. Res. Lett. 20, 967–970 (1993)

    Article  ADS  Google Scholar 

  23. Toon, O. B., McKay, C. P., Griffith, C. A. & Turco, R. P. A physical model of Titan aerosols. Icarus 95, 24–53 (1992)

    Article  ADS  CAS  Google Scholar 

  24. Hutzell, W. T., McKay, C. P., Toon, O. B. & Hourdin, F. Simulations of Titan's brightness by a two dimensional haze model. Icarus 119, 112–129 (1995)

    Article  ADS  Google Scholar 

  25. Cabane, M., Chassefière, E. & Israel, G. Formation and growth of photochemical aerosols in Titan's atmosphere. Icarus 96, 176–189 (1992)

    Article  ADS  Google Scholar 

  26. Cabane, M., Rannou, P., Chassefière, E. & Israel, G. Fractal aggregates in Titan's atmosphere. Planet. Space Sci. 41, 257–267 (1993)

    Article  ADS  Google Scholar 

  27. Lebonnois, S., Toublanc, D., Hourdin, F. & Rannou, P. Seasonal variations of Titan's atmospheric composition. Icarus 152, 384–406 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Rannou, P., McKay, C. P., Botet, R. & Cabane, M. Semi-empirical model of absorption and scattering by isotropic fractal aggregates of spheres. Planet. Space Sci. 47, 385–296 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NASA Planetary Atmospheres Program and the French Programme National de Planétologie. P.R. thanks the National Research Council Associateship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rannou.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rannou, P., Hourdin, F. & McKay, C. A wind origin for Titan's haze structure. Nature 418, 853–856 (2002). https://doi.org/10.1038/nature00961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00961

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing