Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coding of smooth eye movements in three-dimensional space by frontal cortex

Abstract

Through the development of a high-acuity fovea, primates with frontal eyes have acquired the ability to use binocular eye movements to track small objects moving in space1. The smooth-pursuit system moves both eyes in the same direction to track movement in the frontal plane (frontal pursuit), whereas the vergence system moves left and right eyes in opposite directions to track targets moving towards or away from the observer (vergence tracking). In the cerebral cortex and brainstem, signals related to vergence eye movements—and the retinal disparity and blur signals that elicit them—are coded independently of signals related to frontal pursuit2,3,4,5,6. Here we show that these types of signal are represented in a completely different way in the smooth-pursuit region of the frontal eye fields7,8,9,10,11. Neurons of the frontal eye field modulate strongly during both frontal pursuit and vergence tracking, which results in three-dimensional cartesian representations of eye movements. We propose that the brain creates this distinctly different intermediate representation to allow these neurons to function as part of a system that enables primates to track and manipulate objects moving in three-dimensional space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative activity of a pursuit neuron in the caudal frontal eye field.
Figure 3: Linear summation of frontal pursuit and vergence tracking responses and maintenance of discharge during target blanking.
Figure 2: Eye velocity and vergence velocity sensitivity of caudal FEF neurons during frontal pursuit and vergence tracking.
Figure 4: Three-dimensional sensitivity vectors of caudal FEF neurons and recording locations.

Similar content being viewed by others

References

  1. Leigh, R. & Zee, D. S. The Neurology of Eye Movements (Oxford Univ. Press, New York, 1999)

    Google Scholar 

  2. Gamlin, P. D. & Yoon, K. An area for vergence eye movement in primate frontal cortex. Nature 407, 1003–1007 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Cumming, B. in Visual Detection of Motion (eds Smith, A. T. & Snowdon, R. J.) 333–366 (Academic, London, 1994)

    Google Scholar 

  4. Mays, L. E., Porter, J. D., Gamlin, P. D. R. & Tellow, C. A. Neural control of vergence eye movements: neurons encoding vergence velocity. J. Neurophysiol. 56, 1007–1021 (1986)

    Article  CAS  Google Scholar 

  5. Mays, L. E. & Gamlin, P. D. Neuronal circuitry controlling the near response. Curr. Opin. Neurobiol. 5, 763–768 (1995)

    Article  CAS  Google Scholar 

  6. Zhou, W. & King, W. M. Premotor commands encode monocular eye movements. Nature 393, 692–695 (1998)

    Article  ADS  CAS  Google Scholar 

  7. MacAvoy, M. G., Gottlieb, J. P. & Bruce, C. J. Smooth pursuit eye movement representation in the primate frontal eye field. Cereb. Cortex 1, 95–102 (1991)

    Article  CAS  Google Scholar 

  8. Gottlieb, J. P., MacAvoy, M. G. & Bruce, C. J. Neural responses related to smooth pursuit eye movements and their correspondence with electrically elicited slow eye movements in the primate frontal eye field. J. Neurophysiol. 72, 1634–1653 (1994)

    Article  CAS  Google Scholar 

  9. Tian, J. & Lynch, J. C. Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. J. Neurophysiol. 76, 2740–2771 (1996)

    Article  CAS  Google Scholar 

  10. Tanaka, K. & Fukushima, K. Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. J. Neurophysiol. 80, 28–47 (1998)

    Article  CAS  Google Scholar 

  11. Fukushima, K., Sato, T., Fukushima, J., Shinmei, Y. & Kaneko, C. R. S. Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole body rotation. J. Neurophysiol. 83, 563–587 (2000)

    Article  CAS  Google Scholar 

  12. Maunsell, J. H. & van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983)

    Article  CAS  Google Scholar 

  13. Roy, J. P., Komatsu, H. & Wurtz, R. H. Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci. 12, 2478–2492 (1992)

    Article  CAS  Google Scholar 

  14. Eifuku, S. & Wurtz, R. H. Response to motion in extrastriate area MSTl: disparity sensitivity. J. Neurophysiol. 82, 2462–2475 (1999)

    Article  CAS  Google Scholar 

  15. Shi, D., Friedman, H. R. & Bruce, C. J. Deficits in smooth pursuit eye movements after muscimol inactivation within the primate frontal eye field. J. Neurophysiol. 80, 458–464 (1998)

    Article  CAS  Google Scholar 

  16. Fukushima, K., Sato, T. & Fukushima, J. Vestibular-pursuit interactions: gaze-velocity and target-velocity signals in the monkey frontal eye fields. Ann. NY Acad. Sci. 871, 248–259 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Ferrera, V. P. & Barborica, A. Predictive responses to invisible target motion in macaque frontal eye field. Soc. Neurosci. Abstr. 26, 669 (2000)

    Google Scholar 

  18. Fukushima, K., Yamanobe, T., Shinmei, Y. & Fukushima, J. Predictive responses of peri-arcuate pursuit neurons to visual target motion. Exp. Brain Res. 145, 104–120 (2002)

    Article  Google Scholar 

  19. Semmlow, J. L., Weihong, Y. & Alvarez, T. L. Evidence for separate control of slow version and vergence eye movements: support for Hering's law. Vision Res. 38, 1145–1152 (1998)

    Article  CAS  Google Scholar 

  20. Gamlin, P. D. Subcortical neural circuits for ocular accommodation and vergence in primates. Ophthal. Physiol. Opt. 2, 81–89 (1999)

    Article  Google Scholar 

  21. Judge, S. J. & Cumming, B. G. Neurons in the monkey midbrain with activity related to vergence eye movements and accommodation. J. Neurophysiol. 55, 915–930 (1986)

    Article  CAS  Google Scholar 

  22. Takemura, A., Inoue, Y., Kawano, K., Quaia, C. & Miles, F. A. Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. J. Neurophysiol. 85, 2245–2266 (2001)

    Article  CAS  Google Scholar 

  23. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69, 902–914 (1993)

    Article  CAS  Google Scholar 

  24. Ferraina, S., Pare, M. & Wurtz, R. H. Disparity sensitivity of frontal eye field neurons. J. Neurophysiol. 83, 625–629 (2000)

    Article  CAS  Google Scholar 

  25. Kakei, S., Hoffman, D. S. & Strick, P. L. Direction of action is represented in the ventral premotor cortex. Nature Neurosci. 4, 1020–1025 (2001)

    Article  CAS  Google Scholar 

  26. Mushiake, H., Tanatsugu, Y. & Tanji, J. Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J. Neurophysiol. 78, 567–571 (1997)

    Article  CAS  Google Scholar 

  27. Fogassi, L. et al. Space coding by premotor cortex. Exp. Brain Res. 89, 686–690 (1992)

    Article  CAS  Google Scholar 

  28. Fogassi, L. et al. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76, 141–157 (1996)

    Article  CAS  Google Scholar 

  29. Graziano, M. S., Hu, X. T. & Gross, C. G. Visuospatial properties of ventral premotor cortex. J. Neurophysiol. 77, 2268–2292 (1997)

    Article  CAS  Google Scholar 

  30. Krauzlis, R. J. & Lisberger, S. G. Directional organization of eye movement and visual signals in the floccular lobe of the monkey cerebellum. Exp. Brain Res. 109, 289–302 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Cumming, M. Goldberg, S. Lisberger, F. Miles and P. Strick for comments on the manuscript, and T. Akao and F. Sato for participation in some experiments. This work was supported in part by CREST of JST, Japanese Ministry of Education, Science, Culture and Sports, and Marna Cosmetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikuro Fukushima.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, K., Yamanobe, T., Shinmei, Y. et al. Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature 419, 157–162 (2002). https://doi.org/10.1038/nature00953

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00953

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing