Directionally selective calcium signals in dendrites of starburst amacrine cells


The detection of image motion is fundamental to vision. In many species, unique classes of retinal ganglion cells selectively respond to visual stimuli that move in specific directions. It is not known which retinal cell first performs the neural computations that give rise to directional selectivity in the ganglion cell. A prominent candidate has been an interneuron called the ‘starburst amacrine cell’. Using two-photon optical recordings of intracellular calcium concentration, here we find that individual dendritic branches of starburst cells act as independent computation modules. Dendritic calcium signals, but not somatic membrane voltage, are directionally selective for stimuli that move centrifugally from the cell soma. This demonstrates that direction selectivity is computed locally in dendritic branches at a stage before ganglion cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calcium responses in starburst amacrine cell dendrites.
Figure 2: Surround stimulation evokes a decrease in [Ca2+] and occasionally transient increases after the end of the stimulus.
Figure 3: Local stimulation evokes local calcium signals.
Figure 4: Moving stimuli evoke direction-selective calcium responses in dendrites.
Figure 5: Preferred direction and cellular morphology.
Figure 6: The GABAA blocker SR-95531 caused increased spontaneous activity but no reduction of [Ca2+]-signal direction selectivity.
Figure 7: Responses to expanding and contracting waves.


  1. 1

    Barlow, H. B., Hill, R. M. & Levick, W. R. Rabbit retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173, 377–407 (1964)

    CAS  Article  Google Scholar 

  2. 2

    Vaney, D. I., He, S., Taylor, W. R. & Levick, W. R. in Motion Vision—Computational, Neural, and Ecological Constraints (eds Zanker, J. M. & Zeil, J.) (Springer, Berlin, 2001)

    Google Scholar 

  3. 3

    Masland, R. H., Mills, J. W. & Cassidy, C. The functions of acetylcholine in the rabbit retina. Proc. R. Soc. Lond. B 223, 121–139 (1984)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Borg-Graham, L. J. & Grzywacz, N. M. in Single Neuron Computation (eds McKenna, T., Zornetzer, S. F. & Davis, J. L.) 347–375 (Academic, London, 1992)

    Google Scholar 

  5. 5

    Famiglietti, E. V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol. 309, 40–70 (1991)

    CAS  Article  Google Scholar 

  6. 6

    Tauchi, M. & Masland, R. H. The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B 223, 101–191 (1984)

    ADS  CAS  Article  Google Scholar 

  7. 7

    He, S. & Masland, R. H. Retinal direction selectivity after targeted laser ablation of starburst amacrine cells. Nature 389, 378–382 (1997)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Borg-Graham, L. J. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neurosci. 4, 176–183 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Taylor, W. R., He, S., Levick, W. R. & Vaney, D. I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Euler, T. & Denk, W. Dendritic processing. Curr. Opin. Neurobiol. 11, 415–422 (2001)

    CAS  Article  Google Scholar 

  12. 12

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ehinger, B., Zucker, C. L., Bruun, A. & Adolph, A. In vivo staining of oligodendroglia in the rabbit retina. Glia 10, 40–48 (1994)

    CAS  Article  Google Scholar 

  14. 14

    Miller, R. F. et al. Structure and functional connections of presynaptic terminals in the vertebrate retina revealed by activity-dependent dyes and confocal microscopy. J. Comp. Neurol. 437, 129–155 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Brandon, C. Cholinergic neurons in the rabbit retina: dendritic branching and ultrastructural connectivity. Brain Res. 426, 119–130 (1987)

    CAS  Article  Google Scholar 

  16. 16

    Denk, W. & Detwiler, P. B. Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl Acad. Sci. USA 96, 7035–7040 (1999)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bloomfield, S. A. Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. J. Neurophys. 68, 711–725 (1992)

    CAS  Article  Google Scholar 

  18. 18

    Taylor, W. R. & Wassle, H. Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur. J. Neurosci. 7, 2300–2321 (1995)

    Article  Google Scholar 

  19. 19

    Peters, B. N. & Masland, R. H. Responses to light of starburst amacrine cells. J. Neurophysiol. 75, 469–480 (1996)

    CAS  Article  Google Scholar 

  20. 20

    Miller, R. F. & Bloomfield, S. A. Electroanatomy of a unique amacrine cell in the rabbit retina. Proc. Natl Acad. Sci. USA 80, 3069–3073 (1983)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Poznanski, R. R. Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: a functional interpretation of dendritic morphology. Bull. Math. Biol. 54, 905–928 (1992)

    CAS  Article  Google Scholar 

  22. 22

    Taylor, W. R. & Wässle, H. Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur. J. Neurosci. 7, 2308–2321 (1995)

    CAS  Article  Google Scholar 

  23. 23

    Pan, Z. H. & Lipton, S. A. Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cell terminals. J. Neurosci. 15, 2668–2679 (1995)

    CAS  Article  Google Scholar 

  24. 24

    Linn, D. M. & Massey, S. C. GABA inhibits ACh release from the rabbit retina: a direct effect or feedback to bipolar cells? Vis. Neurosci. 8, 97–106 (1992)

    CAS  Article  Google Scholar 

  25. 25

    Massey, S. C., Linn, D. M., Kittila, C. A. & Mirza, W. Contributions of GABAA receptors and GABAC receptors to acetylcholine release and directional selectivity in the rabbit retina. Vis. Neurosci. 14, 939–948 (1997)

    CAS  Article  Google Scholar 

  26. 26

    Wyatt, H. J. & Daw, N. W. Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191, 204–205 (1976)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Reichardt, W. in Sensory Communication (ed. Rosenblith, W. A.) 377–390 (MIT Press/Wiley, New York, 1961)

    Google Scholar 

  28. 28

    Velte, T. J. & Miller, R. F. Spiking and nonspiking models of starburst amacrine cells in the rabbit retina. Vis. Neurosci. 14, 1073–1088 (1997)

    CAS  Article  Google Scholar 

  29. 29

    Keyser, K. T. et al. Amacrine, ganglion, and displaced amacrine cells in the rabbit retina express nicotinic acetylcholine receptors. Vis. Neurosci. 17, 743–752 (2000)

    CAS  Article  Google Scholar 

  30. 30

    Zhou, Z. J. & Fain, G. L. Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices. J. Neurosci. 15, 5334–5345 (1995)

    CAS  Article  Google Scholar 

  31. 31

    Wässle, H., Koulen, P., Brandstätter, J. H., Fletcher, E. L. & Becker, C. M. Glycine and GABA receptors in the mammalian retina. Vision Res. 38, 1411–1430 (1998)

    Article  Google Scholar 

  32. 32

    Masland, R. H., Mills, J. W. & Hayden, S. A. Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers. Proc. R. Soc. Lond. B 223, 79–100 (1984)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Brecha, N., Johnson, D., Peichl, L. & Wassle, H. Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. Proc. Natl Acad. Sci. USA 85, 6187–6191 (1988)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Vaney, D. I. & Young, H. M. GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res. 438, 369–373 (1988)

    CAS  Article  Google Scholar 

  35. 35

    O'Malley, D. M., Sandell, J. H. & Masland, R. H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12, 1394–1408 (1992)

    CAS  Article  Google Scholar 

  36. 36

    Schwartz, E. A. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 238, 350–355 (1987)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Dodge, F. A. Jr & Rahamimoff, R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193, 419–432 (1967)

    CAS  Article  Google Scholar 

  38. 38

    Ariel, M. & Daw, N. W. Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. J. Physiol. 324, 161–185 (1982)

    CAS  Article  Google Scholar 

  39. 39

    Grzywacz, N. M., Tootle, J. S. & Amthor, F. R. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit retinal directional selectivity? Vis. Neurosci. 14, 39–54 (1997)

    CAS  Article  Google Scholar 

  40. 40

    Kittila, C. A. & Massey, S. C. Pharmacology of directionally selective ganglion cells in the rabbit retina. J. Neurophysiol. 77, 675–689 (1997)

    CAS  Article  Google Scholar 

  41. 41

    Grzywacz, N. M., Merwine, D. K. & Amthor, F. R. Complementary roles of two excitatory pathways in retinal directional selectivity. Vis. Neurosci. 15, 1119–1127 (1998)

    CAS  Article  Google Scholar 

  42. 42

    Masland, R. H. & Mills, J. W. Autoradiographic identification of acetylcholine in the rabbit retina. J. Cell Biol. 83, 159–178 (1979)

    CAS  Article  Google Scholar 

  43. 43

    Borst, A. & Egelhaaf, M. Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. Proc. Natl Acad. Sci. USA 87, 9363–9367 (1990)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Vaney, D. I., Collins, S. P. & Young, H. M. in Neurobiology of the Inner Retina (eds Weiler, R. & Osborn, N. N.) 157–168 (Springer, Berlin, 1989)

    Google Scholar 

  45. 45

    Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178, 477–504 (1965)

    CAS  Article  Google Scholar 

Download references


We thank A. Borst and D. Margolis for useful discussions, R. Friedrich for comments on the manuscript, and M. Müller, J. Tritthart and J. Sawinski for technical help.

Author information



Corresponding author

Correspondence to Thomas Euler.

Ethics declarations

Competing interests

W.D. is a co-holder of a patent for two-photon microscopy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Euler, T., Detwiler, P. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing