Abstract
The ‘Late Heavy Bombardment’ was a phase in the impact history of the Moon that occurred 3.8–4.0 Gyr ago, when the lunar basins with known dates were formed1,2. But no record of this event has yet been reported from the few surviving rocks of this age on the Earth. Here we report tungsten isotope anomalies, based on the 182Hf–182W system (half-life of 9 Myr), in metamorphosed sedimentary rocks from the 3.7–3.8-Gyr-old Isua greenstone belt of West Greenland and closely related rocks from northern Labrador, Canada. As it is difficult to conceive of a mechanism by which tungsten isotope heterogeneities could have been preserved in the Earth's dynamic crust–mantle environment from a time when short-lived 182Hf was still present, we conclude that the metamorphosed sediments contain a component derived from meteorites.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ryder, G. Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71, 322–323 (1990)
Cohen, B. A., Swindle, T. D. & King, D. A. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754–1756 (2000)
Anbar, A. D., Zahnle, K. J., Arnold, G. L. & Mojzsis, S. J. Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth's surface. J. Geophys. Res. 106, 3219–3236 (2001)
Meier, R. & Owen, T. C. Cometary deuterium. Space Sci. Rev. 90, 33–43 (1999)
Kring, D. A. & Cohen, B. A. Cataclysmic bombardment throughout the inner solar system 3.9-4.0 Ga. J. Geophys. Res. E 107(2), 4-1–4-5 (2002)
Shukolyukov, A. & Lugmair, G. W. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science 282, 927–929 (1998)
Schoenberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta (in the press)
Lee, D. C. & Halliday, A. N. Hf-W isotopic evidence for rapid accretion and differentiation in the early solar system. Science 274, 1876–1879 (1996)
Horan, M. F., Smoliar, M. I. & Walker, R. J. 182W and 187Re-187Os systematics of iron meteorites: Chronology for melting, differentiation, and crystallization in asteroids. Geochim. Cosmochim. Acta 62, 545–554 (1998)
Lee, D. C. & Halliday, A. N. Accretion of primitive planetesimals: Hf-W isotopic evidence from enstatite chondrites. Science 288, 1629–1631 (2000)
Quitté, G., Birck, J. L. & Allègre, C. J. 182Hf-182W systematics in eucrites: the puzzle of iron segregation in the early solar system. Earth Planet. Sci. Lett. 184, 83–94 (2000)
Lee, D. C. & Halliday, A. N. Hf-W internal isochrons for ordinary chondrites and the initial 182Hf/180Hf of the solar system. Chem. Geol. 169, 35–43 (2000)
Yin, Q.-Z. et al. New Hf-W data that are consistent with Mn-Cr chronology: implications for early solar system evolution. Lunar Planet. Sci. XXXIII, A1700 (2002)
Appel, P. W. U. & Moorbath, S. Exploring earth's oldest geological record in Greenland. Eos 80, 257–264 (1999)
Nutman, A. P. & Collerson, K. D. Very early Archaean crustal-accretion complexes preserved in the North Atlantic craton. Geology 19, 791–794 (1991)
Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Norman, M. D. Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contrib. Mineral. Petrol. 137, 364–388 (1999)
Mason, B. Handbook of Elemental Abundances in Meteorites (Gordon and Breach Science, New York, 1971)
Koeberl, C., Reimold, W. U., McDonald, I. & Rosing, M. T. in Impacts and the Early Earth (eds Gilmour, I. & Koeberl, C.) 73–97 (Springer, Heidelberg, 1999)
Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999)
Kerridge, J. F. Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985)
Lee, D. C., Halliday, A. N., Snyder, G. A. & Taylor, L. A. Age and origin of the moon. Science 278, 1098–1103 (1997)
Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Phil. Trans. R. Soc. Lond. A 325, 535–544 (1988)
Acknowledgements
We thank T. Ewart for discussion and G.W. Lugmair for his review. S.M. collected the Greenland samples under the auspices of the Isua Multidisciplinary Project, and thanks P.W.U. Appel for logistic support. R.S. and B.S.K. thank P. Greenfield for financial support. Analytical costs were partly covered by a UQ New Staff start-up grant to R.S. Collection of the Northern Labrador samples by K.D.C. was financially supported by NSF.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Schoenberg, R., Kamber, B., Collerson, K. et al. Tungsten isotope evidence from ∼3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403–405 (2002). https://doi.org/10.1038/nature00923
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature00923
This article is cited by
-
182W anomalies in mantle: a brief review
Acta Geochimica (2022)
-
Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation
Scientific Reports (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.