Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain

Abstract

At nerve terminals, a focal and transient increase in intracellular Ca2+ triggers the fusion of neurotransmitter-filled vesicles with the plasma membrane. The most extensively studied candidate for the Ca2+-sensing trigger is synaptotagmin I, whose Ca2+-dependent interactions with acidic phospholipids and syntaxin1 have largely been ascribed to its C2A domain2,3,4,5,6, although the C2B domain also binds Ca2+ (refs 7, 8). Genetic tests of synaptotagmin I have been equivocal as to whether it is the Ca2+-sensing trigger of fusion6,9,10,11,12,13,14,15. Synaptotagmin IV, a related isoform that does not bind Ca2+ in the C2A domain, might be an inhibitor of release16,17. We mutated an essential aspartate of the Ca2+-binding site of the synaptotagmin I C2A domain and expressed it in Drosophila lacking synaptotagmin I. Here we show that, despite the disruption of the binding site, the Ca2+-dependent properties of transmission were not altered. Similarly, we found that synaptotagmin IV could substitute for synaptotagmin I. We conclude that the C2A domain of synaptotagmin is not required for Ca2+-dependent synaptic transmission, and that synaptotagmin IV promotes rather than inhibits transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altered Ca2+-dependent interactions of the C2A domain of synaptotagmin I.
Figure 2: Synaptotagmin ID2N rescues transmission in sytI-null mutants.
Figure 3: Synaptotagmin IV expression restores transmission to a sytI-null synapse.
Figure 4: Expression of synaptotagmin IV at wild-type synapses (sytI+/+) does not suppress transmission.

Similar content being viewed by others

References

  1. Chapman, E. R., Hanson, P. I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Chapman, E. R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735–5741 (1994)

    CAS  PubMed  Google Scholar 

  3. Davletov, B. A. & Sudhof, T. C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993)

    CAS  PubMed  Google Scholar 

  4. Kee, Y. & Scheller, R. H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, C., Davletov, B. A. & Sudhof, T. C. Distinct Ca2+ and Sr2 + binding properties of synaptotagmins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J. Biol. Chem. 270, 24898–24902 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Damer, C. K. & Creutz, C. E. Synergistic membrane interactions of the two C2 domains of synaptotagmin. J. Biol. Chem. 269, 31115–31123 (1994)

    CAS  PubMed  Google Scholar 

  8. Desai, R. C. et al. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150, 1125–1136 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305 (1993)

    Article  CAS  PubMed  Google Scholar 

  10. Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T. & Schwarz, T. L. Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10727–10731 (1994)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  11. DiAntonio, A. & Schwarz, T. L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 12, 909–920 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Littleton, J. T., Stern, M., Perin, M. & Bellen, H. J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl Acad. Sci. USA 91, 10888–10892 (1994)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Reist, N. E. et al. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J. Neurosci. 18, 7662–7673 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Littleton, J. T., Serano, T. L., Rubin, G. M., Ganetzky, B. & Chapman, E. R. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature 400, 757–760 (1999)

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Wang, C. T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Ubach, J., Zhang, X., Shao, X., Sudhof, T. C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17, 3921–3930 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995)

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Zhang, X., Rizo, J. & Sudhof, T. C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. von Poser, C., Ichtchenko, K., Shao, X., Rizo, J. & Sudhof, T. C. The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding. J. Biol. Chem. 272, 14314–14319 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. Loewen, C. A., Mackler, J. M. & Reist, N. E. Drosophila synaptotagmin I null mutants survive to early adulthood. Genesis 31, 30–36 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Rizo, J. & Sudhof, T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Mackler, J. M., Drummond, J. A., Loewen, C. A., Robinson, I. M. & Reist, N. E. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature advance online publication, 7 July 2002 (doi:10.1038/nature00846)

  25. Neher, E. & Penner, R. Mice sans synaptotagmin. Nature 372, 316–317 (1994)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Voets, T. et al. Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc. Natl Acad. Sci. USA 98, 11680–11685 (2001)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, J. Z., Davletov, B. A., Sudhof, T. C. & Anderson, R. G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78, 751–760 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268–1271 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Burgoyne, R. D. & Morgan, A. Calcium sensors in regulated exocytosis. Cell Calcium 24, 367–376 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. DiAntonio, A., Parfitt, K. O. & Schwartz, T. L. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73, 1281–1290 (1993)

    Article  CAS  PubMed  Google Scholar 

  31. Martin, A. R. A further study of the statistical composition of the endplate. J. Physiol. 130, 114–122 (1955)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Inman for technical assistance; N. Reist, J. Li Bryan Stewart and B. Niemeyer for reagents and discussions; and N. Gay and the Department of Biochemistry (Cambridge) for resources. I.M.R. was supported by the American Heart Association, Western Affiliate, and is a Medical Research Council Career Development Award Fellow. The work was supported by the Muscular Dystrophy Association, by a Silvio Conti Center for Neuroscience Award from the National Institute of Mental Health, and by the National Institutes of Health (T.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iain M. Robinson or Thomas L. Schwarz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, I., Ranjan, R. & Schwarz, T. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418, 336–340 (2002). https://doi.org/10.1038/nature00915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00915

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing