Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ecosystem carbon loss with woody plant invasion of grasslands

Abstract

The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink1,2,3,4,5,6,7,8,9,10,11,12,13,14. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr-1) by comparing carbon and nitrogen budgets and soil δ13C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concentrations of total soil organic carbon with depth.
Figure 2: The proportional change in total soil organic carbon (a) and nitrogen (b) to 3 m depth with woody plant invasion of native grasslands.
Figure 3: δ13C values of soil organic carbon for the three wettest sites—Vernon, Riesel and Engeling.

Similar content being viewed by others

References

  1. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990)

    Article  ADS  CAS  Google Scholar 

  2. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth's ecosystems. Science 277, 494–499 (1997)

    Article  CAS  Google Scholar 

  3. Schimel, D. S. et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–172 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Turner, B. L. II et al. (eds) in The Earth as Transformed by Human Action (Cambridge Univ. Press, Cambridge, 1990)

    Google Scholar 

  5. Tucker, C. J., Dregne, H. E. & Newcomb, W. W. Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253, 299–301 (1991)

    Article  ADS  CAS  Google Scholar 

  6. Scholes, R. J. & Archer, S. R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997)

    Article  Google Scholar 

  7. Brown, J. H., Valone, T. J. & Curtin, C. G. Reorganization of an arid ecosystem in response to recent climate change. Proc. Natl Acad. Sci. USA 94, 9729–9733 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc. Natl Acad. Sci. USA 95, 14839–14842 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997)

    Article  Google Scholar 

  10. Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Pacala, S. W. et al. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292, 2316–2320 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Houghton, R. A., Hackler, J. L. & Lawrence, K. T. The U. S. carbon budget: contributions from land-use change. Science 285, 574–578 (1999)

    Article  CAS  Google Scholar 

  13. Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002)

    Article  ADS  Google Scholar 

  14. Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q. & Longjun, C. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001)

    Article  CAS  Google Scholar 

  15. Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994)

    Article  ADS  CAS  Google Scholar 

  16. Van Auken, O. W. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 31, 197–215 (2000)

    Article  Google Scholar 

  17. Boutton, T. W. et al. Delta C-13 values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82, 5–41 (1998)

    Article  ADS  Google Scholar 

  18. Jackson, R. B. et al. Belowground consequences of vegetation change and their treatment in models. Ecol. Appl. 10, 470–483 (2000)

    Article  Google Scholar 

  19. Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000)

    Article  Google Scholar 

  21. Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996)

    Article  CAS  Google Scholar 

  23. Neill, C. & Davidson, E. A. in Global Climate Change and Tropical Ecosystems (eds Lal, R., Kimble, J. M. & Stewart, B. A.) 197–211 (CRC, Boca Raton, 2000)

    Google Scholar 

  24. Wall, D. H., Adams, G. A. & Parsons, A. N. in Global Biodiversity in a Changing Environment (eds Chapin, F. S., Sala, O. E. & Huber-Sannwald, E.) 47–82 (Springer, New York, 2001)

    Book  Google Scholar 

  25. Vitousek, P. M., Kennedy, M. J., Derry, L. A. & Chadwick, O. A. Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia 121, 255–259 (1999)

    Article  ADS  Google Scholar 

  26. Burke, I. C. et al. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 53, 800–805 (1989)

    Article  ADS  Google Scholar 

  27. Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000)

    Article  Google Scholar 

  28. Archer, S., Boutton, T. W. & Hibbard, K. A. in Global Biogeochemical Cycles in the Climate System (eds Schulze, E.-D. et al.) 115–137 (Academic, San Diego, 2001)

    Book  Google Scholar 

  29. Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion to grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001)

    Article  Google Scholar 

  30. Gill, R. A. et al. Nonlinear grassland responses to past and future atmospheric CO2 . Nature 417, 279–282 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Cook, L. Giles, J. Karr, L. Mack, A. Parsons and S. Rainey for laboratory analyses, and W. H. Schlesinger, A. T. Austin, O. E. Sala and E. A. Davidson for manuscript suggestions. We also thank R. J. Ansley, H. W. Polley and many others who helped us locate sites and provide their history. This work was supported by the US National Science Foundation, NIGEC/DOE, the Inter-American Institute for Global Change Research, the Andrew W. Mellon Foundation, and the Geology Foundation of the University of Texas at Austin. This paper is a contribution to the Global Change and Terrestrial Ecosystems core project of the International Geosphere Biosphere Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Jackson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, R., Banner, J., Jobbágy, E. et al. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002). https://doi.org/10.1038/nature00910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00910

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing