Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping

Abstract

Since the invention of the first magnetic memory disk in 1954, much effort has been put into enhancing the speed, bit density and reliability of magnetic memory devices. In the case of magnetic random access memory (MRAM) devices, fast coherent magnetization rotation by precession of the entire memory cell is desired1,2,3,4,5,6, because reversal by domain-wall motion is much too slow. In principle, the fundamental limit of the switching speed via precession is given by half of the precession period. However, under-critically damped systems exhibit severe ringing7,8 and simulations show that, as a consequence, undesired back-switching of magnetic elements of an MRAM can easily be initiated by subsequent write pulses, threatening data integrity. We present a method to reverse the magnetization in under-critically damped systems by coherent rotation of the magnetization while avoiding any ringing. This is achieved by applying specifically shaped magnetic field pulses that match the intrinsic properties of the magnetic elements. We demonstrate, by probing all three magnetization components9,10, that reliable precessional reversal in lithographically structured micrometre-sized elliptical permalloy elements is possible at switching times of about 200 ps, which is ten times faster than the natural damping time constant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The schematic experimental set-up.
Figure 2: Large field excitation without stopping.
Figure 3: The in-plane and polar magnetic response of the element measured on five different locations to verify coherent rotation of the whole element.
Figure 4: Switching by large-field excitation and suppression of ringing.

Similar content being viewed by others

References

  1. Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in small Permalloy disk by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134–1137 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Back, C. H. et al. Magnetization reversal in ultrashort magnetic field pulses. Phys. Rev. Lett. 81, 3251–3254 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Stamps, R. L. & Hillebrands, B. Biased switching of small magnetic particles. Appl. Phys. Lett. 75, 1143–1145 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Choi, B. C., Belov, M., Hiebert, W. K., Ballentine, G. K. & Freeman, M. R. Ultrafast magnetization reversal dynamics investigated by time domain imaging. Phys. Rev. Lett. 86, 728–731 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Gerrits, Th. et al. Precession dynamics in NiFe thin films, induced by short magnetic in-plane field pulses generated by a photoconductive switch. J. Magn. Soc. Jpn 25, 192–197 (2001)

    Article  CAS  Google Scholar 

  6. Acremann, Y. et al. Ultrafast generation of magnetic fields in a Schottky diode. Nature 414, 51–54 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Bauer, M., Lopusnik, R., Fassbender, J. & Hillebrands, B. Suppression of magnetic-field pulse-induced magnetization precession by pulse tailoring. Appl. Phys. Lett. 76, 2758–2760 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Acremann, Y., Back, C. H., Buess, M., Pescia, D. & Pokrovsky, V. Bifurcation in precessional switching. Appl. Phys. Lett. 79, 2228–2230 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Acremann, Y. et al. Imaging precessional motion of the magnetization vector. Science 290, 492–494 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Silva, T. J., Pufall, M. R. & Kabos, P. Nonlinear magneto-optic measurement of flux propagation dynamics in thin Permalloy films. J. Appl. Phys. 91, 1066–1073 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Landau, L. & Lifshitz, E. On the theory of dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Union 8, 153–169 (1935)

    MATH  Google Scholar 

  12. Crawford, T. M., Kabos, P. & Silva, T. J. Coherent control of precessional dynamics in thin film permalloy. Appl. Phys. Lett. 76, 2113–2115 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Gerrits, Th. et al. Picosecond control of coherent magnetization dynamics in Permalloy thin films by picosecond magnetic field pulse shaping. J. Magn. Magn. Mater. 240, 283–286 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Auston, D. H. Impulse response of photoconductors in transmission lines. IEEE J. Quantum Electr. 19, 639–648 (1983)

    Article  ADS  Google Scholar 

  15. Frankel, M. Y., Gupta, S., Valdmanis, J. A. & Mourou, G. A. Terahertz attenuation and dispersion characteristics of coplanar transmission lines. IEEE Trans. Microwave Theory Technol. 39, 910–915 (1991)

    Article  ADS  Google Scholar 

  16. Keil, U. D. et al. High-speed coplanar transmission lines. IEEE J. Quantum Electr. 28, 2333–2342 (1992)

    Article  ADS  Google Scholar 

  17. Keil, U. D., Gerritsen, H. J., Haverkort, J. E. M. & Wolter, H. J. Generation of ultrashort electrical pulses with variable pulse width. Appl. Phys. Lett. 66, 1629–1631 (1994)

    Article  ADS  Google Scholar 

  18. Keil, U. D. & Dykaar, D. R. Ultrafast pulse generation in photoconductive switches. IEEE J. Quantum Electr. 32, 1664–1671 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Holzman, J. F., Vermeulen, F. E. & Elezzabi, A. Y. Recombination-independent photogeneration of ultra-short electrical pulses. Appl. Phys. Lett. 76, 134–136 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Rasing, Th. Nonlinear magneto-optical probing of magnetic interfaces. Appl. Phys. B 68, 477–484 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Crawford, T. M., Silva, T. J., Teplin, C. P. & Rogers, C. T. Subnanosecond magnetization dynamics measured by the second-harmonic magneto-optic Kerr effect. Appl. Phys. Lett. 74, 3386–3388 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Zhu, J. & White, M. Magnetization Reversal and Energy Damping? (Intermag Europe 2002, Amsterdam, The Netherlands, 2002)

    Google Scholar 

  23. Hiebert, W. K., Ballentine, G. E. & Freeman, M. R. Comparison of experimental and numerical micromagnetic dynamics in precessional switching and modal oscillations. Phys. Rev. B 65, R140404-1–R140404-4 (2002)

    Article  ADS  Google Scholar 

  24. Kaka, S. & Russek, S. E. Precessional switching of submicrometer spin-valves. Appl. Phys. Lett. 86, 2958–2960 (2002)

    Article  ADS  Google Scholar 

  25. Schumacher, H. W. et al. Precessional Magnetization Reversal in Microscopic Spin Valve Cells (Intermag Europe 2002, Amsterdam, The Netherlands, 2002)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all members of CTMF1 at Siemens for their collaboration, and for guidance with preparing the devices. This work was part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) and financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Philips Research and partly supported by the Brite Euram project Tunnel Sense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Rasing.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerrits, T., van den Berg, H., Hohlfeld, J. et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002). https://doi.org/10.1038/nature00905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00905

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing