Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phonon-enhanced light–matter interaction at the nanometre scale


Optical near fields exist close to any illuminated object. They account for interesting effects such as enhanced pinhole transmission1 or enhanced Raman scattering enabling single-molecule spectroscopy2. Also, they enable high-resolution (below 10 nm) optical microscopy3,4,5,6. The plasmon-enhanced near-field coupling between metallic nanostructures7,8,9 opens new ways of designing optical properties10,11,12 and of controlling light on the nanometre scale13,14. Here we study the strong enhancement of optical near-field coupling in the infrared by lattice vibrations (phonons) of polar dielectrics. We combine infrared spectroscopy with a near-field microscope that provides a confined field to probe the local interaction with a SiC sample. The phonon resonance occurs at 920 cm-1. Within 20 cm-1 of the resonance, the near-field signal increases 200-fold; on resonance, the signal exceeds by 20 times the value obtained with a gold sample. We find that phonon-enhanced near-field coupling is extremely sensitive to chemical and structural composition of polar samples, permitting nanometre-scale analysis of semiconductors and minerals. The excellent physical and chemical stability of SiC in particular may allow the design of nanometre-scale optical circuits for high-temperature and high-power operation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calculated field enhancement Eloc/Ein due to Fröhlich resonance at the surface of a 10-nm-diameter sphere.
Figure 2: Enhancement and narrowing of a phonon-induced spectral response by the near-field probing process.
Figure 3: Experimental scheme (a) and images (b,c) taken with a scattering-type mid-infrared scanning near-field microscope (s-SNOM).
Figure 4: Phonon-enhanced near-field response of SiC, normalized to Au.


  1. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    ADS  CAS  Article  Google Scholar 

  2. Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)

    ADS  CAS  Article  Google Scholar 

  3. Specht, M., Pedarnig, J. D., Heckl, W. M. & Hänsch, T. W. Scanning plasmon near-field microscopy. Phys. Rev. Lett. 68, 476–479 (1992)

    ADS  CAS  Article  Google Scholar 

  4. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution. Science 269, 1083–1085 (1995)

    ADS  CAS  Article  Google Scholar 

  5. Hillenbrand, R. & Keilmann, F. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy. Appl. Phys. Lett. 80, 25–27 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999)

    ADS  CAS  Article  Google Scholar 

  7. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998)

    ADS  CAS  Article  Google Scholar 

  8. Colas des Francs, G. et al. Optical analogy to electronic quantum corrals. Phys. Rev. Lett. 86, 4950–4953 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Hillenbrand, R. & Keilmann, F. Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy. Appl. Phys. B 73, 239–243 (2001)

    ADS  CAS  Article  Google Scholar 

  10. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystal: putting new twists on light. Nature 386, 143–149 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    ADS  CAS  Article  Google Scholar 

  12. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, P. G. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    ADS  CAS  Article  Google Scholar 

  13. Krenn, J. R. et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590–2593 (1999)

    ADS  CAS  Article  Google Scholar 

  14. Weeber, J.-C. et al. Optical addressing on the subwavelength scale. Phys. Rev. E 62, 7381–7388 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Ruppin, R. J. in Electromagnetic Surface Modes (ed. Boardman, A. D.) 345–398 (Wiley, Chichester, 1982)

    Google Scholar 

  16. Fröhlich, H. Theory of Dielectrics (Clarendon, Oxford, 1949)

    Google Scholar 

  17. Jackson, J. D. Classical Electrodynamics (Wiley & Sons, New York, 1975)

    MATH  Google Scholar 

  18. Palik, E. W. Handbook of Optical Constants of Solids (Academic, San Diego, 1985)

    Google Scholar 

  19. Engelbrecht, F. & Helbig, R. Effect of crystal anisotropy on the infrared reflectivity of 6H-SiC. Phys. Rev. B 48, 15698–15707 (1993)

    ADS  CAS  Article  Google Scholar 

  20. Kreibig, U., Gartz, M. & Hilger, A. Mie resonances: Sensors for physical and chemical cluster interface properties. Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997)

    CAS  Article  Google Scholar 

  21. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994)

    ADS  CAS  Article  Google Scholar 

  22. Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002)

    ADS  CAS  Article  Google Scholar 

  23. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000)

    ADS  CAS  Article  Google Scholar 

  24. Knoll, B. & Keilmann, F. Infrared conductivity mapping for nanoelectronics. Appl. Phys. Lett. 77, 3980–3982 (2000)

    ADS  CAS  Article  Google Scholar 

  25. Aravind, P. K. & Metiu, H. The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy. Surf. Sci. 124, 506–528 (1983)

    ADS  CAS  Article  Google Scholar 

  26. Shchegrov, A. V., Joulain, K., Carminati, R. & Greffet, J. J. Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. 85, 1548–1551 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Hartmann, T., Kramer, A., Hillebrand, A., Guckenberger, R., et al. in Procedures in Scanning Probe Microscopies (ed. Colton, J. R.) 12–16 (Wiley, Chichester, 1998)

    Google Scholar 

  28. Aigouy, L. et al. Near-field optical spectroscopy using an incoherent light source. Appl. Phys. Lett. 76, 397–399 (2000)

    ADS  CAS  Article  Google Scholar 

Download references


We acknowledge discussions with M. Stark, A. Otto, R. Helbig, R. Guckenberger and J. Plitzko. Supported by Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. Keilmann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing