Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Possible in situ formation of meteoritic nanodiamonds in the early Solar System


Grains of dust that pre-date the Sun provide insights into their formation around other stars and into the early evolution of the Solar System1,2,3,4. Nanodiamonds recovered from meteorites, which originate in asteroids, have been thought to be the most abundant type of presolar grain3,4. If that is true, then nanodiamonds should be at least as abundant in comets, because they are thought to have formed further out in the early Solar System than the asteroid parent bodies, and because they should be more pristine5,6,7. Here we report that nanodiamonds are absent or very depleted in fragile, carbon-rich interplanetary dust particles, some of which enter the atmosphere at speeds within the range of cometary meteors8,9. One interpretation of the results is that some (perhaps most) nanodiamonds formed within the inner Solar System and are not presolar at all, consistent with the recent detection of nanodiamonds within the accretion discs of other young stars10. An alternative explanation is that all meteoritic nanodiamonds are indeed presolar, but that their abundance decreases with heliocentric distance, in which case our understanding of large-scale transport and circulation within the early Solar System is incomplete11.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bright-field images of a thin section of chondritic IDP W7027A8D before and after in situ acid etching.
Figure 2: Experimental lattice-fringe images of nanodiamonds.
Figure 3: Simulated lattice-fringe images.


  1. Hoppe, P. & Zinner, E. Presolar dust grains from meteorites and their stellar sources. J. Geophys. Res. 510, 10371–10385 (2000)

    Article  ADS  Google Scholar 

  2. Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. R. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 60, 4853–4872 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Anders, E. & Zinner, E. Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite. Meteoritics 28, 490–514 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Bernatowicz, T. J. & Walker, R. M. Ancient stardust in the laboratory. Phys. Today 50, 26–32 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Farinella, P., Gonzi, R. & Froeschle, C. The injection of asteroid fragments into resonances. Icarus 101, 174–187 (1993)

    Article  ADS  Google Scholar 

  6. Greenberg, J. M. in Comets (ed. Wilkening, L. L.) 131–162 (Univ. Arizona Press, Tucson, 1982)

    Google Scholar 

  7. Huss, G. in Astrophysical Implications of the Laboratory Study of Presolar Materials (eds Bernatowicz, T. & Zinner, E.) 721–748 (AIP Press, New York, 1997)

    Book  Google Scholar 

  8. Bradley, J. P. & Brownlee, D. E. Cometary particles: thin-sectioning and electron-beam analysis. Science 231, 1542–1544 (1984)

    Article  ADS  Google Scholar 

  9. Brownlee, D. E. et al. Identification of individual cometary IDPs by thermally stepped He release. Lunar Planet Sci. XXVI, 183–184 (1995)

    ADS  Google Scholar 

  10. Van Kerckhoven, C., Tielens, A. G. G. M. & Waelkens, C. Nanodiamonds around HD 97048 and Elias 1. Astron. Astrophys. 384, 568–584 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Hill, H. G. M., Grady, C. A., Nuth, J. A., Hallenbeck, S. L. & Sitko, M. L. Constraints on nebular dynamics and chemistry based on observations of annealed magnesium silicate grains in comets and in disks around Herbig Ae and Be stars. Proc. Natl Acad. Sci. USA 98, 2182–2187 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Bernatowicz, T. J. & Gibbons, P. C. Electron energy-loss spectroscopy of interstellar diamonds. Astrophys. J. 359, 246–255 (1990)

    Article  ADS  CAS  Google Scholar 

  13. Brownlee, D. E., Joswiak, D. J., Bradley, J. P., Gezo, J. C. & Hill, H. G. M. Spatially resolved acid dissolution of IDPs: the state of carbon and the abundance of diamonds in the dust. Lunar Planet. Sci. XXXI, 1921–1922 (2000)

    ADS  Google Scholar 

  14. Messenger, S. Identification of molecular cloud material in interplanetary dust particles. Nature 404, 968–971 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Bradley, J. P. & Brownlee, D. E. An interplanetary dust particle linked to type CM meteorites and an asteroidal origin. Science 251, 489–596 (1992)

    Google Scholar 

  16. Thomas, K. L. et al. An asteroidal breccia: The anatomy of a cluster IDP. Geochim. Cosmochim. Acta 59, 2797–2815 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Luu, J. X. Spectral diversity among the nuclei of comets. Icarus 104, 138–148 (1993)

    Article  ADS  Google Scholar 

  18. Russell, S. S., Arden, J. W. & Pillinger, C. T. A carbon and nitrogen isotope study of diamond from primitive meteorites. Meteorit. Planet. Sci. 31, 343–355 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Huss, G. R. & Lewis, R. S. Noble gases in presolar diamonds. I, Three distinct components and their implications for diamond origins. Meteoritics 29, 791–810 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Sylvester, R. J. in Solid Interstellar Matter: The ISO Revolution (eds d'Hendecourt, L., Joblin, C. & Jones, A.) 263–276 (Springer, New York, 1999)

    Google Scholar 

  21. Hill, H. G. M., Jones, A. P. & d'Hendecourt, L. B. Diamonds in carbon-rich proto-planetary nebulae. Astron. Astrophys. 336, L41–L44 (1998)

    ADS  CAS  Google Scholar 

  22. Guillois, O., Ledoux, G. & Reynaud, C. Diamond infrared emission bands in circumstellar media. Astrophys. J. 521, L133–L136 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Lodders, K. & Palme, H. in Protostars and Planets IV (eds Krot, A. N. & Fegley, B.) 1019–1053 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  24. Howard, W. et al. Synthesis of diamond powder in acetylene oxygen plasma. J. Appl. Phys. 68, 1247–1251 (1990)

    Article  ADS  CAS  Google Scholar 

  25. Liou, J.-C., Zook, H. A. & Dermott, S. F. Kuiper belt dust grains as a source of interplanetary dust particles. Icarus 124, 429–440 (1996)

    Article  ADS  Google Scholar 

  26. Bradley, J. P. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust particles from comets. Science 265, 925–927 (1992)

    Article  ADS  Google Scholar 

  27. Thomas, K. L., Blanford, G. E., Keller, L. P., Klöck, W. & McKay, D. S. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57, 1551–1566 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Schramm, L. S., Brownlee, D. E. & Wheelock, M. M. Major element compositions of stratospheric micrometeorites. Meteoritics 24, 99–112 (1989)

    Article  ADS  CAS  Google Scholar 

Download references


We thank T. Bernatowicz for bulk nanodiamond extracts, A.W. Phelps for discussions, and G. Huss for comments and suggestions. This work was supported by NASA and the Georgia Tech Electron Microscopy Center. H.G.M.H. acknowledges support from the NAS/NRC RRA programme.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. P. Bradley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dai, Z., Bradley, J., Joswiak, D. et al. Possible in situ formation of meteoritic nanodiamonds in the early Solar System. Nature 418, 157–159 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing