The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation

Abstract

It is extremely difficult to perform a quantitative analysis of the chemistry1,2 associated with multibubble cavitation: unknown parameters include the number of active bubbles, the acoustic pressure acting on each bubble and the bubble size distribution. Single-bubble sonoluminescence3,4,5,6,7 (characterized by the emission of picosecond flashes of light) results from nonlinear pulsations of an isolated vapour-gas bubble in an acoustic field. Although the latter offers a much simpler environment in which to study the chemical activity of cavitation, quantitative measurements have been hindered by the tiny amount of reacting gas within a single bubble (typically <10-13 mol). Here we demonstrate the existence of chemical reactions within a single cavitating bubble, and quantify the sources of energy dissipation during bubble collapse. We measure the yields of nitrite ions, hydroxyl radicals and photons. The energy efficiency of hydroxyl radical formation is comparable to that in multibubble cavitation, but the energy efficiency of light emission is much higher. The observed rate of nitrite formation is in good agreement with the calculated diffusion rate of nitrogen into the bubble. We note that the temperatures attained in single-bubble cavitation in liquids with significant vapour pressures will be substantially limited by the endothermic chemical reactions of the polyatomic species inside the collapsing bubble.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The yields of nitrite ions, hydroxyl radicals, and photons from a single cavitating bubble at 52 kHz in a 15-ml glass cell at 3 °C.
Figure 2: SBSL spectra of water collected at 52 kHz and 3 °C at acoustic intensities of 1.51, 1.43 and 1.33 atm, and at 22 °C and 1.51 atm.
Figure 3

References

  1. 1

    Suslick, K. S. (ed.) Ultrasound: Its Chemical, Physical, and Biological Effects (VCH, New York, 1988)

  2. 2

    Suslick, K. S. Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn Vol. 26 517–541 (Wiley, New York, 1998)

    Google Scholar 

  3. 3

    Brenner, M. P., Hilgenfeldt, S. & Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425–483 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Putterman, S. J. & Weninger, K. R. Sonoluminescence: How bubbles turn sound into light. Annu. Rev. Fluid Mech. 32, 445–476 (2000)

    ADS  Article  Google Scholar 

  5. 5

    Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91, 3166–3183 (1992)

    ADS  Article  Google Scholar 

  6. 6

    Hiller, R. A., Putterman, S. J. & Weninger, K. R. Time-resolved spectra of sonoluminescence. Phys. Rev. Lett. 80, 1090–1093 (1998)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Gompf, B. et al. Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79, 1405–1408 (1997)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Vazquez, G., Camara, C., Putterman, S. & Weninger, K. Sonoluminescence: Nature's smallest blackbody. Opt. Lett. 26, 575–577 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Moss, W. C., Clarke, D. B. & Young, D. A. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science 276, 1398–1401 (1997)

    CAS  Article  Google Scholar 

  10. 10

    Hilgenfeldt, S., Grossmann, S. & Lohse, D. A simple explanation of light emission in sonoluminescence. Nature 398, 402–405 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Lohse, D. & Hilgenfeldt, S. Inert gas accumulation in sonoluminescing bubbles. J. Chem. Phys. 107, 6986–6997 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Makino, K., Mossoba, M. M. & Riesz, P. Chemical effects of ultrasound on aqueous solutions. Evidence for OH and H by spin trapping. J. Am. Chem. Soc. 104, 3537–3539 (1982)

    CAS  Article  Google Scholar 

  13. 13

    Mead, E. L., Sutherland, R. G. & Verrall, R. E. The effect of ultrasound on water in the presence of dissolved gases. J. Phys. Chem. 54, 1114–1120 (1976)

    CAS  Google Scholar 

  14. 14

    Tian, Y., Ketterling, J. A. & Apfel, R. E. Direct observation of microbubble oscillations. J. Acoust. Soc. Am. 100, 3976–3978 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Mark, G. et al. OH radical formation by ultrasound in aqueous solutions. Part 2: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason. Sonochem. 5, 41–52 (1998)

    CAS  Article  Google Scholar 

  16. 16

    Zel'dovich, Ya. B. & Raizer, Yu. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966)

    Google Scholar 

  17. 17

    Storey, B. D. & Szeri, A. J. Water vapour, sonoluminescence and sonochemistry. Proc. R. Soc. Lond. A 456, 1685–1709 (2000)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  18. 18

    Barber, B. P. et al. Defining the unknowns of sonoluminescence. Phys. Rep. 281, 65–143 (1997)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Margulis, M. A. Modern views on the nature of acousto-chemical reactions. Russ. J. Phys. Chem. 50, 1–18 (1976)

    CAS  Google Scholar 

  20. 20

    Toegel, R., Hilgenfeldt, S. & Lohse, D. Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume. Phys. Rev. Lett. 88, 34301-1–34301-4 (2002)

    ADS  Article  Google Scholar 

  21. 21

    Lepoint, T., Lepoint-Mullie, F. & Henglein, A. in Sonochemistry and Sonoluminescence (eds Crum, L. A., Mason, T. J., Reisse, J. L. & Suslick, K. S.) 285–290 (Kluwer Academic, Dordrecht, 1999)

    Google Scholar 

  22. 22

    Verraes, T., Lepoit-Mullie, F., Lepoint, T. & Longuet-Higgins, M. S. Experimental study of the liquid flow near a single sonoluminescent bubble. J. Acoust. Soc. Am. 108, 117–125 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Taleyarkhan, R. P. et al. Evidence for nuclear emissions during acoustic cavitation. Science 295, 1868–1873 (2002)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Levi, B. G. Skepticism greets claim of bubble fusion. Phys. Today 55(4), 16–18 (2002)

    Article  Google Scholar 

  25. 25

    Moss, W. C., Clarke, D. B., White, J. W. & Young, D. A. Sonoluminescence and the prospects for table-top micro-thermonuclear fusion. Phys. Lett. A 211, 69–74 (1996)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Didenko, Y. T., McNamara, W. B. III & Suslick, K. S. Molecular emission from single-bubble sonoluminescence. Nature 407, 877–879 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    McLean, J. R. & Mortimer, A. J. A cavitation and free radical dosimeter for ultrasound. Ultrasound Med. Biol. 14, 59–64 (1988)

    CAS  Article  Google Scholar 

  28. 28

    Field, L. & Engelhardt, P. R. Organic disulfides and related substances. XXX. Preparations and reactions of mercaptoterephthalic acids and derivatives. J. Org. Chem. 35, 3647–3654 (1970)

    CAS  Article  Google Scholar 

  29. 29

    Fang, X., Mark, G. & von Sonntag, C. OH radical formation by ultrasound in aqueous solutions. Part 1: the chemistry underlying the terephthalate dosimeter. Ultrason. Sonochem. 3, 57–63 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Damiani, P. & Burini, G. Fluorometric determination of nitrite. Talanta 33, 649–652 (1986)

    CAS  Article  Google Scholar 

  31. 31

    Matula, T. J. et al. The acoustic emission from single-bubble sonoluminescence. J. Acoust. Soc. Am. 103, 1377–1382 (1998)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank W.B. McNamara III for discussions. This work was supported by the US Defense Advanced Research Project Agency and in part by the National Science Foundation. We thank the UIUC Laboratory for Fluorescence Dynamics for use of their facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Suslick.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Didenko, Y., Suslick, K. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418, 394–397 (2002). https://doi.org/10.1038/nature00895

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.