Distinct molecular mechanism for initiating TRAF6 signalling

Abstract

Tumour-necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is the only TRAF family member that participates in signal transduction of both the TNF receptor (TNFR) superfamily and the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) superfamily1,2,3,4,5; it is important for adaptive immunity, innate immunity and bone homeostasis. Here we report crystal structures of TRAF6, alone and in complex with TRAF6-binding peptides from CD40 and TRANCE-R (also known as RANK), members of the TNFR superfamily, to gain insight into the mechanism by which TRAF6 mediates several signalling cascades. A 40° difference in the directions of the bound peptides in TRAF6 and TRAF2 shows that there are marked structural differences between receptor recognition by TRAF6 and other TRAFs. The structural determinant of the petide–TRAF6 interaction reveals a Pro-X-Glu-X-X-(aromatic/acidic residue) TRAF6-binding motif, which is present not only in CD40 and TRANCE-R but also in the three IRAK adapter kinases for IL-1R/TLR signalling. Cell-permeable peptides with the TRAF6-binding motif inhibit TRAF6 signalling, which indicates their potential as therapeutic modulators. Our studies identify a universal mechanism by which TRAF6 regulates several signalling cascades in adaptive immunity, innate immunity and bone homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: TRAF6 structures.
Figure 2: Functional analyses for the interaction of TRAF6 with CD40, TRANCE-R and IRAK.
Figure 3: Inhibitory effects of TRAF6 decoy peptides (L-T6DP-1 and L-T6DP-2) in TRANCE-mediated signal transduction and osteoclast differentiation.

References

  1. 1

    Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signalling. Genes Dev. 13, 1015–1024 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353–362 (1999)

    CAS  Article  Google Scholar 

  4. 4

    Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000)

    CAS  Article  Google Scholar 

  5. 5

    Chung, J. Y., Park, Y. C., Ye, H. & Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688 (2002)

    CAS  PubMed  Google Scholar 

  6. 6

    Park, Y. C., Burkitt, V., Villa, A. R., Tong, L. & Wu, H. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398, 533–538 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    McWhirter, S. M. et al. Crystallographic analysis of CD40 recognition and signalling by human TRAF2. Proc. Natl Acad. Sci. USA 96, 8408–8413 (1999)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ye, H., Park, Y. C., Kreishman, M., Kieff, E. & Wu, H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol. Cell 4, 321–330 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Pullen, S. S. et al. CD40-tumour necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signalling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 37, 11836–11845 (1998)

    CAS  Article  Google Scholar 

  10. 10

    Darnay, B. G., Ni, J., Moore, P. A. & Aggarwal, B. B. Activation of NF-κB by RANK requires tumour necrosis factor receptor-associated factor (TRAF) 6 and NF-κB-inducing kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274, 7724–7731 (1999)

    CAS  Article  Google Scholar 

  11. 11

    Pullen, S. S., Dang, T. T., Crute, J. J. & Kehry, M. R. CD40 signalling through tumour necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J. Biol. Chem. 274, 14246–14254 (1999)

    CAS  Article  Google Scholar 

  12. 12

    Wesche, H. et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J. Biol. Chem. 274, 19403–19410 (1999)

    CAS  Article  Google Scholar 

  13. 13

    Wong, B. R. et al. The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355–28359 (1998)

    CAS  Article  Google Scholar 

  14. 14

    Cao, Z., Henzel, W. J. & Gao, X. IRAK: A kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Zhang, F. X. et al. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signalling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274, 7611–7614 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signalling. Science 278, 1612–1615 (1997)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signalling pathway. Nature Immunol. 2, 835–841 (2001)

    CAS  Article  Google Scholar 

  19. 19

    McCarthy, J. V., Ni, J. & Dixit, V. M. RIP2 is a novel NF-κB-activating and cell death-inducing kinase. J. Biol. Chem. 273, 16968–16975 (1998)

    CAS  Article  Google Scholar 

  20. 20

    Yan Liu, X. et al. Peptide-directed suppression of a pro-inflammatory cytokine response. J. Biol. Chem. 275, 16774–16778 (2000)

    Article  Google Scholar 

  21. 21

    Arron, J. R. & Choi, Y. Bone versus immune system. Nature 408, 535–536 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Bundel, D. R. & Sigurskjold, B. W. Determination of accurate thermodynamics of binding by titration microcalorimetry. Methods Enymol. 247, 288–305 (1987)

    Article  Google Scholar 

  23. 23

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  24. 24

    Tong, L. REPLACE, a suite of computer programs for molecular-replacement calculations. J. Appl. Crystallogr. 26, 748–751 (1993)

    Article  Google Scholar 

  25. 25

    Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    CAS  Article  Google Scholar 

  26. 26

    Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building models in electron density maps and the location of errors in those models. Acta Crystallgr. A 47, 110–119 (1991)

    Article  Google Scholar 

  27. 27

    Evans, S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993)

    CAS  Article  Google Scholar 

  28. 28

    Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    CAS  Article  Google Scholar 

  29. 29

    Haridas, V., Darnay, B. G., Natarajan, K., Heller, R. & Aggarwal, B. B. Overexpression of the p80 TNF receptor leads to TNF-dependent apoptosis, nuclear factor-κB activation, and c-Jun kinase activation. J. Immunol. 160, 3152–3162 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Shevde, N. K., Bendixen, A. C., Dienger, K. M. & Pike, J. W. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc. Natl Acad. Sci. USA 97, 7829–7834 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the structural biology groups at the Memorial Sloan-Kettering Cancer Center for use of the microcalorimeter; Z. Cao for human TRAF6 cDNA; G. Mosialos and E. Kieff for the human GST–CD40ct construct; L. Tong, R. Khayat, Z. Yang and C. Lima for help with diffraction data collection; G. Cheng for discussions; C. Ogata and MacCHESS staff for beamline access and support; T. Burling for maintaining the home X-ray source; V. Burkitt and A. Villa for technical help; and laboratory members of Imgenex for synthesizing the decoy peptides. This work was supported in part by the NIH (Y.C.), an MSTP grant (J.R.A.), start-up funds from the Department of Bioimmunotherapy (B.G.D.) and a Translational Research Grant from the Leukemia and Lymphoma Society (B.G.D.). H.Y. is a postdoctoral fellow from the Revson Foundation. H.W. is a Pew Scholar of biomedical sciences and a Rita Allen Scholar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ye, H., Arron, J., Lamothe, B. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002). https://doi.org/10.1038/nature00888

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.