Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequence and analysis of chromosome 2 of Dictyostelium discoideum


The genome of the lower eukaryote Dictyostelium discoideum comprises six chromosomes. Here we report the sequence of the largest, chromosome 2, which at 8 megabases (Mb) represents about 25% of the genome. Despite an A + T content of nearly 80%, the chromosome codes for 2,799 predicted protein coding genes and 73 transfer RNA genes. This gene density, about 1 gene per 2.6 kilobases (kb), is surpassed only by Saccharomyces cerevisiae (one per 2 kb) and is similar to that of Schizosaccharomyces pombe (one per 2.5 kb)1,2. If we assume that the other chromosomes have a similar gene density, we can expect around 11,000 genes in the D. discoideum genome. A significant number of the genes show higher similarities to genes of vertebrates than to those of other fully sequenced eukaryotes1,2,3,4,5,6. This analysis strengthens the view that the evolutionary position of D. discoideum is located before the branching of metazoa and fungi but after the divergence of the plant kingdom7, placing it close to the base of metazoan evolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Feature distribution on chromosome 2.
Figure 2: Functional classification of D. discoideum chromosome 2-coded proteins.
Figure 3: Phylum-specific distribution of proteins.


  1. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996)

    ADS  CAS  Article  Google Scholar 

  2. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002)

    ADS  CAS  Article  Google Scholar 

  3. The C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998)

    ADS  Article  Google Scholar 

  4. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000)

    Article  Google Scholar 

  5. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000)

    ADS  Article  Google Scholar 

  6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Loomis, W. F. Genetic networks that regulate development in Dictyostelium cells. Microbiol. Rev. 60, 135–150 (1996)

    CAS  Article  Google Scholar 

  9. Eichinger, L., Lee, S. S. & Schleicher, M. Dictyostelium as model system for studies of the actin cytoskeleton by molecular genetics. Microsc. Res. Technol. 47, 124–134 (1999)

    CAS  Article  Google Scholar 

  10. Parent, C. A. & Devreotes, P. N. A cell's sense of direction. Science 284, 765–770 (1999)

    ADS  CAS  Article  Google Scholar 

  11. Firtel, R. A. & Meili, R. Dictyostelium: a model for regulated cell movement during morphogenesis. Curr. Opin. Genet. Dev. 10, 421–427 (2000)

    CAS  Article  Google Scholar 

  12. Noegel, A. A. & Schleicher, M. The actin cytoskeleton of Dictyostelium: a story told by mutants. J. Cell Sci. 113, 759–766 (2000)

    CAS  Article  Google Scholar 

  13. Kay, R. R. & Williams, J. G. The Dictyostelium genome project: an invitation to species hopping. Trends Genet. 15, 294–297 (1999)

    CAS  Article  Google Scholar 

  14. Cox, E. C., Vocke, C. D., Walter, S., Gregg, K. Y. & Bain, E. S. Electrophoretic karyotype for Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 87, 8247–8251 (1990)

    ADS  CAS  Article  Google Scholar 

  15. Loomis, W. F. & Kuspa, A. Dictyostelium—A Model System for Cell and Developmental Biology (eds Maeda, Y., Inouye, K. & Takeuchi, I.) 15–30 (Universal Academic, Tokyo, 1997)

    Google Scholar 

  16. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998)

    ADS  CAS  Article  Google Scholar 

  17. Bowman, S. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538 (1999)

    ADS  CAS  Article  Google Scholar 

  18. Glöckner, G. Large scale sequencing and analysis of AT rich eukaryote genomes. Curr. Genom. 1, 289–299 (2000)

    Article  Google Scholar 

  19. Glöckner, G. et al. The complex repeats of Dictyostelium discoideum. Genome Res. 11, 585–594 (2001)

    Article  Google Scholar 

  20. Dear, P. H. in Genome Mapping—A Practical Approach (ed. Dear, P. H.) 95–124 (IRL Press, Oxford, 1997)

    Google Scholar 

  21. Pan, W. C. & Blackburn, E. H. Single extrachromosomal ribosomal RNA gene copies are synthesized during amplification of the rDNA in Tetrahymena. Cell 23, 459–466 (1981)

    CAS  Article  Google Scholar 

  22. Lim, L. P. & Burge, C. B. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl Acad. Sci. USA 98, 11193–11198 (2001)

    ADS  CAS  Article  Google Scholar 

  23. Morio, T. et al. The Dictyostelium developmental cDNA project: generation and analysis of expressed sequence tags from the first-finger stage of development. DNA Res. 5, 335–340 (1998)

    CAS  Article  Google Scholar 

  24. Apweiler, R. et al. InterPro—an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16, 1145–1150 (2000)

    CAS  Article  Google Scholar 

  25. Goebl, M. G. & Petes, T. D. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46, 983–992 (1986)

    CAS  Article  Google Scholar 

  26. Konfortov, B. A., Cohen, H. M., Bankier, A. T. & Dear, P. H. A high-resolution HAPPY map of Dictyostelium discoideum chromosome 6. Genome Res. 10, 1737–1742 (2000)

    CAS  Article  Google Scholar 

  27. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997)

    CAS  Article  Google Scholar 

  28. Parra, G., Blanco, E. & Guigo, R. GeneID in Drosophila. Genome Res. 10, 511–515 (2000)

    CAS  Article  Google Scholar 

  29. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  30. Fortini, M. E., Skupski, M. P., Boguski, M. S. & Hariharan, I. K. A survey of human disease gene counterparts in the Drosophila genome. J. Cell Biol. 150, F23–F30 (2000)

    CAS  Article  Google Scholar 

Download references


We thank S. Förste, N. Zeisse, S. Rothe, S. Landmann, R. Schultz, S. Müller and R. Müller for expert technical assistance. We also thank the working team of the Japanese cDNA project ( for sharing data. The sequencing of chromosome 2 was supported by the Deutsche Forschungsgemeinschaft, with partial support by Köln Fortune. Additional support was obtained from the NIH, the Medical Research Council and the EU. Members of the Sanger Institute Dictyostelium discoideum sequencing team are listed at

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Gernot Glöckner or Angelika A. Noegel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glöckner, G., Eichinger, L., Szafranski, K. et al. Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature 418, 79–85 (2002).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing