Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors

Abstract

One of the central aims of ecology is to identify mechanisms that maintain biodiversity1,2. Numerous theoretical models have shown that competing species can coexist if ecological processes such as dispersal, movement, and interaction occur over small spatial scales1,2,3,4,5,6,7,8,9,10. In particular, this may be the case for non-transitive communities, that is, those without strict competitive hierarchies3,6,8,11. The classic non-transitive system involves a community of three competing species satisfying a relationship similar to the children's game rock–paper–scissors, where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships have been demonstrated in several natural systems12,13,14. Some models predict that local interaction and dispersal are sufficient to ensure coexistence of all three species in such a community, whereas diversity is lost when ecological processes occur over larger scales6,8. Here, we test these predictions empirically using a non-transitive model community containing three populations of Escherichia coli. We find that diversity is rapidly lost in our experimental community when dispersal and interaction occur over relatively large spatial scales, whereas all populations coexist when ecological processes are localized.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Predictions of the lattice-based simulation (see Box 1).
Figure 2: Community dynamics in the experimental treatments: a, Static Plate; b, Flask; and c, Mixed Plate.
Figure 3: Time series photographs of a representative run of the Static Plate environment.

References

  1. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000)

    Article  Google Scholar 

  2. Tilman, D. & Pacala, S. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 13–25 (Univ. Chicago Press, Chicago, 1993)

    Google Scholar 

  3. Czárán, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA 99, 786–790 (2002)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Dieckmann, U., Law, R. & Metz, J. A. J. (eds) The Geometry of Ecological Interactions: Simplifying Spatial Complexity (Cambridge Univ. Press, Cambridge, 2000)

  5. Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994)

    Article  Google Scholar 

  6. Durrett, R. & Levin, S. Allelopathy in spatially distributed populations. J. Theor. Biol. 185, 165–171 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Hassell, M. P., Comins, H. N. & May, R. M. Species coexistence and self-organizing spatial dynamics. Nature 370, 290–292 (1994)

    Article  ADS  Google Scholar 

  8. Pagie, L. & Hogeweg, P. Colicin diversity: A result of eco-evolutionary dynamics. J. Theor. Biol. 196, 251–261 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Tilman, D. & Kareiva, P. (eds) Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (Princeton Univ. Press, Princeton, 1997)

  10. Rohani, P., Lewis, T. J., Grunbaum, D. & Ruxton, G. D. Spatial self-organization in ecology: pretty patterns or robust reality? Trends Ecol. Evol. 12, 70–74 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Frean, M. & Abraham, E. R. Rock-scissors-paper and the survival of the weakest. Proc. R. Soc. Biol. Sci. B 268, 1323–1327 (2001)

    Article  CAS  Google Scholar 

  12. Sinervo, B. & Lively, C. M. The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Buss, L. W. & Jackson, J. B. C. Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113, 223–234 (1979)

    Article  Google Scholar 

  14. Paquin, C. E. & Adams, J. Relative fitness can decrease in evolving asexual populations of S. cerevisiae. Nature 306, 368–371 (1983)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: Insights from studies of bacteria and bacteriophage. Ecol. Lett. 3, 362–377 (2000)

    Article  Google Scholar 

  16. Korona, R., Nakatsu, C. H., Forney, L. J. & Lenski, R. E. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc. Natl Acad. Sci. USA 91, 9037–9041 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Frank, S. A. Spatial polymorphism of bacteriocins and other allelopathic traits. Evol. Ecol. 8, 369–386 (1994)

    Article  Google Scholar 

  19. Iwasa, Y., Nakamaru, M. & Levin, S. A. Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains. Evol. Ecol. 12, 785–802 (1998)

    Article  Google Scholar 

  20. Nakamaru, M. & Iwasa, Y. Competition by allelopathy proceeds in traveling waves: Colicin-immune strain aids colicin-sensitive strain. Theor. Pop. Biol. 57, 131–144 (2000)

    Article  CAS  Google Scholar 

  21. Adams, J., Kinney, T., Thompson, S., Rubin, L. & Helling, R. B. Frequency-dependent selection for plasmid-containing cells of Escherichia coli. Genetics 91, 627–637 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chao, L. & Levin, B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl Acad. Sci. USA 78, 6324–6328 (1981)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feldgarden, M. & Riley, M. A. High levels of colicin resistance in Escherichia coli. Evolution 52, 1270–1276 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Feldgarden, M. & Riley, M. A. The phenotypic and fitness effects of colicin resistance in Escherichia coli K-12. Evolution 53, 1019–1027 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Gordon, D. M. & Riley, M. A. A theoretical and empirical investigation of the invasion dynamics of colicinogeny. Microbiology 145, 655–661 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. James, R., Kleanthous, C. & Moore, G. R. The biology of E colicins: Paradigms and paradoxes. Microbiology 142, 1569–1580 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. Riley, M. A. & Gordon, D. M. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7, 129–133 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999)

    Article  ADS  Google Scholar 

  29. Huisman, J., Johansson, A. M., Folmer, E. O. & Weissing, F. J. Towards a solution of the plankton paradox: The importance of physiology and life history. Ecol. Lett. 4, 408–411 (2001)

    Article  Google Scholar 

  30. Rice, E. L. Allelopathy (Academic Press, Orlando, 1984)

    Google Scholar 

Download references

Acknowledgements

We thank M. Munos for help in the laboratory, N.B. Raju for helping with the plate photography, and D. Ackerly, P. Armsworth, C. Boggs, C. Devine, P. Godfrey-Smith, D. Gordon, A. Hirsh, J. Huisman, C. Jessup, S. Levin, D. Petrov, P. Rainey, T. Ricketts, S. Tuljapurkar, K. Walag and V. Walbot for many comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Kerr.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerr, B., Riley, M., Feldman, M. et al. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002). https://doi.org/10.1038/nature00823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00823

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing