Letter | Published:

Role of experience and oscillations in transforming a rate code into a temporal code

Naturevolume 417pages741746 (2002) | Download Citation

Subjects

Abstract

In the vast majority of brain areas, the firing rates of neurons, averaged over several hundred milliseconds to several seconds, can be strongly modulated by, and provide accurate information about, properties of their inputs. This is referred to as the rate code. However, the biophysical laws of synaptic plasticity require precise timing of spikes over short timescales (<10 ms)1,2. Hence it is critical to understand the physiological mechanisms that can generate precise spike timing in vivo, and the relationship between such a temporal code and a rate code. Here we propose a mechanism by which a temporal code can be generated through an interaction between an asymmetric rate code and oscillatory inhibition. Consistent with the predictions of our model, the rate3,4 and temporal5,6,7 codes of hippocampal pyramidal neurons are highly correlated. Furthermore, the temporal code becomes more robust with experience. The resulting spike timing satisfies the temporal order constraints of hebbian learning. Thus, oscillations and receptive field asymmetry may have a critical role in temporal sequence learning.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)

  2. 2

    Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

  3. 3

    O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971)

  4. 4

    Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)

  5. 5

    O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993)

  6. 6

    Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

  7. 7

    Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995)

  8. 8

    Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6, 271–280 (1996)

  9. 9

    Wallenstein, G. V. & Hasselmo, M. E. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J. Neurophysiol. 78, 393–408 (1997)

  10. 10

    Kamondi, A., Acsady, L., Wang, X. J. & Buzsaki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261 (1998)

  11. 11

    Bose, A., Booth, V. & Recce, M. A temporal mechanism for generating the phase precession of hippocampal place cells. J. Comput. Neurosci. 9, 5–30 (2000)

  12. 12

    Mehta, M. R., Quirk, M. C. & Wilson, M. A. Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25, 707–715 (2000)

  13. 13

    Toth, K., Freund, T. F. & Miles, R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol. 500, 463–474 (1997)

  14. 14

    Mehta, M. R. & Wilson, M. A. From hippocampus to V1: Effect of LTP on spatio-temporal dynamics of receptive fields. Neurocomputing 32, 905–911 (2000)

  15. 15

    Mehta, M. R. Neuronal dynamics of predictive coding. Neuroscientist 7, 490–495 (2001)

  16. 16

    Buzsaki, G., Rappelsberger, P. & Kellenyi, L. Depth profiles of hippocampal rhythmic slow activity (‘theta rhythm’) depend on behaviour. Electroencephalogr. Clin. Neurophysiol. 61, 77–88 (1985)

  17. 17

    Jensen, O. & Lisman, J. E. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn. Mem. 3, 279–287 (1996)

  18. 18

    Hasselmo, M. E., Fransen, E., Dickson, C. & Alonso, A. A. Computational modeling of entorhinal cortex. Ann. NY Acad. Sci. 911, 418–446 (2000)

  19. 19

    Hirase, H., Czurko, H. H., Csicsvari, J. & Buzsaki, G. Firing rate and theta-phase coding by hippocampal pyramidal neurons during ‘space clamping’. Eur. J. Neurosci. 11, 4373–4380 (1999)

  20. 20

    Ekstrom, A. D., Meltzer, J., McNaughton, B. L. & Barnes, C. A. NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields”. Neuron 31, 631–638 (2001)

  21. 21

    Magee, J. C. Dendritic mechanisms of phase precession in hippocampal ca1 pyramidal neurons. J. Neurophysiol. 86, 528–532 (2001)

  22. 22

    Livingstone, M. S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998)

  23. 23

    Chance, F. S., Nelson, S. B. & Abbott, L. F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998)

  24. 24

    Rao, R. P. & Sejnowski, T. J. Predictive learning of temporal sequences in recurrent neocortical circuits. Novartis Found. Symp. 239, 208–229 (2001)

  25. 25

    Konig, P., Engel, A. K., Roelfsema, P. R. & Singer, W. How precise is neuronal synchronization? Neural Comput. 7, 469–485 (1995)

  26. 26

    Levy, W. B., in Computational Models of Learning in Simple Neural Systems (eds Hawkins, R. D. & Bower, J. H.) 243–305 (Academic, New York, 1989)

  27. 27

    Blum, K. I. & Abbott, L. F. A model of spatial map formation in the hippocampus of the rat. Neural Comput. 8, 85–93 (1996)

  28. 28

    Mehta, M. R. & McNaughton, B. L. in Computational Neuroscience: Trends in Research (ed. Bower, J.) 741–745 (Plenum, New York, 1996)

  29. 29

    Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997)

  30. 30

    Zar, J. H. Biostatistical Analysis (Prentice Hall, New Jersey, 1999)

Download references

Acknowledgements

We thank W.F. Asaad, G. Liu, K. Louie, J. Raymond and S. Schnall for comments on the manuscript. This work was supported by the NIH (M.A.W.) and an HHMI pre-doctoral fellowship (A.K.L.). Parts of this work were presented at the Computational Neuroscience Meeting 2000 and at the Society for Neuroscience meeting 2001.

Author information

Affiliations

  1. Center for Learning & Memory, Department of Brain & Cognitive Sciences, RIKEN-MIT Neuroscience Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA

    • M. R. Mehta
    • , A. K. Lee
    •  & M. A. Wilson
  2. Memory, Department of Brain & Cognitive Sciences, RIKEN-MIT Neuroscience Center, Massachusetts Institute of Technology

    • M. R. Mehta
    • , A. K. Lee
    •  & M. A. Wilson

Authors

  1. Search for M. R. Mehta in:

  2. Search for A. K. Lee in:

  3. Search for M. A. Wilson in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding authors

Correspondence to M. R. Mehta or M. A. Wilson.

Supplementary information

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature00807

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.