Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites

Abstract

Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources1,2,3,4. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the 143Nd/144Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chondrite-normalized REE patterns for clinopyroxenes from abyssal peridotites.
Figure 2: Nd isotopic variations in basalts and peridotites along the SWIR.

Similar content being viewed by others

References

  1. McKenzie, D. & O'Nions, R. K. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32, 1021–1091 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 183–280 (American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  3. Spiegelman, M. & Elliott, T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett 118, 1–20 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Salters, V. J. M. & Hart, S. R. The Hf-paradox, and the role of garnet in the MORB source. Nature 342, 420–422 (1989)

    Article  ADS  CAS  Google Scholar 

  5. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    Article  ADS  CAS  Google Scholar 

  6. Bourdon, B., Zindler, A., Langmuir, C. H. & Elliott, T. 230Th-238U systematics in MORB: a global perspective. Nature 384, 231–235 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Salters, V. J. M. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet. Sci. Lett. 141, 109–123 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Hanson, G. N. Geochemical evolution of the suboceanic mantle. J. Geol. Soc. Lond. 134, 1–19 (1977)

    Article  Google Scholar 

  9. le Roex, A. P. et al. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees east. J. Petrol. 24, 267–318 (1983)

    Article  ADS  CAS  Google Scholar 

  10. Zindler, A., Staudigel, H. & Batizza, R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett. 70, 175–195 (1984)

    Article  ADS  CAS  Google Scholar 

  11. Sleep, N. H. Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes. J. Geophys. Res. 89, 10029–10041 (1984)

    Article  ADS  CAS  Google Scholar 

  12. Allègre, C. J. & Turcotte, D. L. Implications of a two component marble-cake mantle. Nature 323, 123–127 (1986)

    Article  ADS  Google Scholar 

  13. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Stracke, A., Salters, V. J. M. & Sims, K. W. W. Assessing the presence of pyroxenite in the source of Hawaiian basalts: hafnium-neodymium-thorium isotope evidence. Geochem. Geophys. Geosyst. 1, 1999GC000013 (2000)

  15. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogical variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984)

    Article  ADS  CAS  Google Scholar 

  16. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990)

    Article  ADS  Google Scholar 

  17. Johnson, K. T. M. & Dick, H. J. B. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J. Geophys. Res. 97, 9219–9241 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofman, A. W. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–681 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Snow, J. E., Hart, S. R. & Dick, H. J. B. Nd and Sr isotope evidence linking mid-ocean ridge basalts and abyssal peridotites. Nature 371, 57–60 (1994)

    Article  ADS  Google Scholar 

  20. le Roex, A. P., Dick, H. J. B. & Watkins, R. T. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge:11°53′E to 14°38′E. Contrib. Mineral. Petrol. 110, 253–268 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Dick, H. J. B., Schouten, H. & Lin, J. Crustal(?) accretion during extreme oblique spreading at an ultra-slow mid-ocean ridge. Eos 82, S407 (2001)

    Google Scholar 

  22. Dick, H. J. B., Georgen, J. E., Le Roex, A. P. & Lin, J. The influence of ridge geometry on mantle melting at an ultra-slow spreading ridge. Eos 79, F919 (1998)

    Google Scholar 

  23. Wendt, J. I., Regelous, M., Niu, Y., Hékinian, R. & Collerson, K. D. Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet. Sci. Lett. 173, 271–284 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Hanan, B. B., Blichert-Toft, J., Pyle, D. G., Christie, D. & Albarède, F. Ultra-depleted hafnium isotopes from Australian-Antarctic discordance MORB. J. Conf. Abstr. 5, 478 (2000)

    Google Scholar 

  25. Keshav, S. & Sen, G. Majoritic garnets in Hawaiian xenoliths: preliminary results. Geophys. Res. Lett. 28, 3509–3512 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Salters, V. J. M. & Longhi, J. E. Trace element partitioning during the initial stages of melting beneath ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Sun, S.-S. & McDonough, W. F. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) 313–345 (Geological Society, London, 1989)

    Google Scholar 

  28. Mahoney, J. J. et al. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J. Geophys. Res. 94, 4033–4052 (1989)

    Article  ADS  CAS  Google Scholar 

  29. Mahoney, J., Le Roex, A. P., Peng, Z., Fisher, R. L. & Natland, J. H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: Isotope systematic of the Central Southwest Indian Ridge (17-50E). J. Geophys. Res. 97, 19771–19790 (1992)

    Article  ADS  CAS  Google Scholar 

  30. le Roex, A. P., Dick, H. J. B. & Fisher, R. L. Petrology and geochemistry of MORB from 25°E to 46°E along the southwest Indian ridge: Evidence for contrasting styles of mantle enrichment. J. Petrol. 30, 947–986 (1989)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Sachi-Kocher for her assistance. We thank M. Bizimis for help with the major- and trace-element analyses; X. Li for help with the mineral picking; G. Sen for access to the FIU electron microprobe; Y. Wang and E. Hauri for access to the ion microprobe at DTM and assistance with the trace-element analyses; W. Parker for statistical advice; R. Odom, S. Foley and M. Bizimis for suggesting improvements to the manuscript; and B. Hanan for comments and suggestions. This work was supported by the NSF Division of Ocean Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. M. Salters.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salters, V., Dick, H. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72 (2002). https://doi.org/10.1038/nature00798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00798

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing