Letter | Published:

Coulomb blockade and the Kondo effect in single-atom transistors

Naturevolume 417pages722725 (2002) | Download Citation

Subjects

Abstract

Using molecules as electronic components is a powerful new direction in the science and technology of nanometre-scale systems1. Experiments to date have examined a multitude of molecules conducting in parallel2,3, or, in some cases, transport through single molecules. The latter includes molecules probed in a two-terminal geometry using mechanically controlled break junctions4,5 or scanning probes6,7 as well as three-terminal single-molecule transistors made from carbon nanotubes8, C60 molecules9, and conjugated molecules diluted in a less-conducting molecular layer10. The ultimate limit would be a device where electrons hop on to, and off from, a single atom between two contacts. Here we describe transistors incorporating a transition-metal complex designed so that electron transport occurs through well-defined charge states of a single atom. We examine two related molecules containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of different lengths. Changing the length of the insulating tether alters the coupling of the ion to the electrodes, enabling the fabrication of devices that exhibit either single-electron phenomena, such as Coulomb blockade, or the Kondo effect.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

  2. 2

    Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

  3. 3

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

  4. 4

    Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997)

  5. 5

    Kergueris, C. et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505–12513 (1999)

  6. 6

    Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996)

  7. 7

    Cui, X. D. et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001)

  8. 8

    Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 (1999)

  9. 9

    Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)

  10. 10

    Schön, J. H., Meng, H. & Bao, Z. Field-effect modulation of the conductance of single molecules. Science 294, 2138–2140 (2001)

  11. 11

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley & Sons, New York, 2001)

  12. 12

    Maskus, M. & Abruna, H. D. Synthesis and characterization of redox-active metal complexes sequentially self-assembled onto gold electrodes via a new thiol-terpyridine ligand. Langmuir 12, 4455–4462 (1996)

  13. 13

    Park, H., Lim, A. K. L., Park, J., Alivisatos, A. P. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)

  14. 14

    Grabert, H. & Devoret, M. H. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York, 1992)

  15. 15

    Deshmukh, M. M., Bonet, E., Pasupathy, A. N. & Ralph, D. C. Equilibrium and nonequilibrium electron tunneling via discrete quantum states. Phys. Rev. B 65, 073301-1–073301-4 (2002)

  16. 16

    Bonet, E., Deshmukh, M. M. & Ralph, D. C. Solving rate equations for electron tunneling via discrete quantum states. Phys. Rev. B 65, 045317-1–045317-10 (2002)

  17. 17

    Akera, H. Coulomb staircase and total spin in quantum dots. Phys. Rev. B 60, 10683–10686 (1999)

  18. 18

    Ralph, D. C., Black, C. T. & Tinkham, M. Gate-voltage studies of discrete electronic states in aluminum nanoparticles. Phys. Rev. Lett. 78, 4087–4090 (1997)

  19. 19

    Oshio, H., Spiering, H., Ksenofontov, V., Renz, F. & Guetlich, P. Electronic relaxation phenomena following 57Co(EC)57Fe nuclear decay in [MnII(terpy)2](ClO4)2.1/2H2O and in the spin crossover complexes [CoII(terpy)2]X2.nH2O (X = Cl and ClO4): A Moessbauer emission spectroscopic study. Inorg. Chem. 40, 1143–1150 (2001)

  20. 20

    Bezryadin, A., Dekker, C. & Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1999)

  21. 21

    Wolf, E. L. Principles of Electron Tunneling Spectroscopy Ch. 8 (Oxford Univ. Press, Oxford, 1989)

  22. 22

    van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000)

  23. 23

    Nygård, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000)

  24. 24

    Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998)

  25. 25

    Testaferri, L., Tiecco, M., Tingoli, M., Chianelli, D. & Montanucci, M. Simple syntheses of aryl alkyl thioethers and of aromatic thiols from unactivated aryl halides and efficient methods for selective dealkylation of aryl alkyl ethers and thioethers. Synthesis (Stuttgart) 9, 751–755 (1983)

  26. 26

    Mathis, J. M. & Pallenberg, A. J. Preparation of novel, functionalized 1,10-phenanthrolines. Synth. Commun. 27, 2943–2951 (1997)

Download references

Acknowledgements

We thank E. Smith, M. Brink and J.-Y. Park for help with measurements, and M. Deshmukh for discussions. This work was supported by NSF, through individual-investigator grants, the Cornell Center for Materials Research, and the use of the National Nanofabrication Users Network. Support was also provided by the Packard Foundation, the US Department of Energy and Department of Education GAANN fellowships.

Author information

Author notes

  1. Jiwoong Park, Abhay N. Pasupathy, Jonas I. Goldsmith and Héctor D. Abruña: These authors contributed equally to this work

Affiliations

  1. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, 14853, USA

    • Jiwoong Park
    • , Abhay N. Pasupathy
    • , Connie Chang
    • , Yuval Yaish
    • , Jason R. Petta
    • , Marie Rinkoski
    • , James P. Sethna
    • , Paul L. McEuen
    •  & Daniel C. Ralph
  2. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA

    • Jonas I. Goldsmith
    •  & Héctor D. Abruña
  3. Department of Physics, University of California, Berkeley, California, 94720, USA

    • Jiwoong Park

Authors

  1. Search for Jiwoong Park in:

  2. Search for Abhay N. Pasupathy in:

  3. Search for Jonas I. Goldsmith in:

  4. Search for Connie Chang in:

  5. Search for Yuval Yaish in:

  6. Search for Jason R. Petta in:

  7. Search for Marie Rinkoski in:

  8. Search for James P. Sethna in:

  9. Search for Héctor D. Abruña in:

  10. Search for Paul L. McEuen in:

  11. Search for Daniel C. Ralph in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding authors

Correspondence to Paul L. McEuen or Daniel C. Ralph.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature00791

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.