Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Kondo resonance in a single-molecule transistor


When an individual molecule1, nanocrystal2,3,4, nanotube5,6 or lithographically defined quantum dot7 is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization8. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena9,10,11,12,13,14,15,16,17,18,19, including the Kondo resonance10,11,12,13,14,15,16. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry20,21. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule20 serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of single-molecule transistors incorporating individual divanadium molecules.
Figure 2: Plots of differential conductance (∂I/∂V) as a function of bias voltage (V) and gate voltage (Vg) obtained from two different single-V2 transistors D1 (a) and D2 (b).
Figure 3: Transport data obtained from single-V2 transistors in an applied magnetic field (B).
Figure 4: Temperature-dependent transport data from device D3.


  1. Park, H. et al. Nano-mechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Klein, D. L. et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Park, H. et al. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Banin, U., Cao, Y., Katz, D. & Millo, O. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 400, 542–544 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–476 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997)

    Article  CAS  Google Scholar 

  7. Kouwenhoven, L. P. et al. Excitation spectra of circular few-electron quantum dots. Science 278, 1788–1792 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Grabert, H. & Devoret, M. H. Single Charge Tunneling (Plenum, New York, 1992)

    Book  Google Scholar 

  9. Liang, W. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Goldhaber-Gordon, D. et al. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81, 5225–5228 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Schmid, J., Weis, J., Eberl, K. & Klitzing, K. v. Absence of odd-even parity behaviour for Kondo resonances in quantum dots. Phys. Rev. Lett. 84, 5824–5827 (2000)

    Article  ADS  CAS  Google Scholar 

  14. van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801-1–126801-4 (2002)

    Article  ADS  Google Scholar 

  17. Glazman, L. I. & Raikh, M. E. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452–455 (1988)

    ADS  Google Scholar 

  18. Ng, T. K. & Lee, P. A. On-site Coulomb repulsion and resonant tunneling. Phys. Rev. Lett. 61, 1768–1771 (1988)

    Article  ADS  CAS  Google Scholar 

  19. Meir, Y., Wingreen, N. S. & Lee, P. A. Low-temperature transport through a quantum dot: The Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Shores, M. P. & Long, J. R. Tetracyanide-bridged divanadium complexes: Redox switching between strong antiferromagnetic and strong ferromagnetic coupling. J. Am. Chem. Soc. 124, 3512–3513 (2002)

    Article  CAS  Google Scholar 

  21. Shores, M. P., Sokol, J. J. & Long, J. R. Nickel(II)-molybdenum(III)-cyanide clusters: Synthesis and magnetic behaviour of species incorporating [(Me3tacn}Mo(CN)3]. J. Am. Chem. Soc. 124, 2279–2292 (2002)

    Article  CAS  Google Scholar 

  22. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Schlottmann, P. Some exact results for dilute mixed-valent and heavy-fermion systems. Phys. Rep. 181, 1–119 (1989)

    Article  ADS  CAS  Google Scholar 

  24. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993)

    Book  Google Scholar 

  25. Cobden, D. H. et al. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Haldane, F. D. M. Scaling theory of the asymmetric Anderson model. Phys. Rev. Lett., 416–419 (1978)

  27. Wingreen, N. S. & Meir, Y. Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. Phys. Rev. B 49, 11040–11052 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Lin, H. Q. & Hirsch, J. E. Magnetic properties of a degenerate Anderson impurity. Phys. Rev. B 37, 1864–1873 (1988)

    Article  ADS  CAS  Google Scholar 

  29. Bonca, J. & Gubernatis, J. E. Quantum Monte Carlo simulations of the degenerate single-impurity Anderson model. Phys. Rev. B 47, 13137–13146 (1993)

    Article  ADS  CAS  Google Scholar 

  30. De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001)

    Article  ADS  CAS  Google Scholar 

Download references


We thank C. Lieber, B. Halperin and D. R. Reichman for discussions. This work was supported by NSF, DARPA, the Dreyfus Foundation, the Packard Foundation, the Research Corporation, and Harvard University (H.P.) and NSF (J.R.L.). M.B. is partially supported by the Department of Physics, Harvard University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hongkun Park.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liang, W., Shores, M., Bockrath, M. et al. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing