Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ordered porous materials for emerging applications

Abstract

“Space—the final frontier.” This preamble to a well-known television series captures the challenge encountered not only in space travel adventures, but also in the field of porous materials, which aims to control the size, shape and uniformity of the porous space and the atoms and molecules that define it. The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials. This has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents. In fact, porous materials now seem set to contribute to developments in areas ranging from microelectronics to medical diagnosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pore characteristics in the aluminophospates AlPO4-11, AlPO4-5 and VPI-5.
Figure 2: Pore size and shape of ETS-10.
Figure 3: Transmission electron micrographs of VPI-5 and MCM-41.
Figure 4: Characteristics of a supported zeolite ZSM-5 film.
Figure 5: The use of AlPO4-5 as a host for guest molecules.

Similar content being viewed by others

References

  1. Davis, M. E. & Lobo, R. F. Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992)

    Article  CAS  Google Scholar 

  2. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crowder, C. A molecular sieve with eighteen-membered rings. Nature 331, 698–699 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3-D-linked molecular rods—A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4‴-tetracyanotetra-phenylmethane]BF4.XC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990)

    Article  CAS  Google Scholar 

  6. Suzuki, H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and process for production thereof. US Patent 4,699,892 (1987).

  7. Stucky, G. D. & MacDougall, J. E. Quantum confinement and host guest chemistry—Probing a new dimension. Science 247, 669–678 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Davis, M. E. et al. Physicochemical properties of VPI-5. J. Am. Chem. Soc. 111, 3919–3924 (1989)

    Article  CAS  Google Scholar 

  9. Huo, Q. H. et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc. Chem. Commun. 875–876 (1992)

  10. Yang, G. Y. & Sevov, S. C. Zinc phosphate with gigantic pores of 24 tetrahedra. J. Am. Chem. Soc. 121, 8389–8390 (1999)

    Article  CAS  Google Scholar 

  11. Estermann, M., McCusker, L. B., Baerlocher, Ch., Merrouche, A. & Kessler, H. A synthetic gallophosphate molecular-sieve with a 20-tetrahedral-atom pore opening. Nature 352, 320–323 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Kuznicki, S. M. et al. A titanosilicate molecular sieve with tunable pores and its use in gas separation. Nature 412, 720–724 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Li, H. X. & Davis, M. E. Phosphate-based molecular sieves with pores comprised of greater than 12-rings. Catal. Today 19, 61–106 (1994)

    Article  CAS  Google Scholar 

  14. Lobo, R. F. et al. Characterization of the extra-large-pore zeolite UTD-1. J. Am. Chem. Soc. 119, 8474–8484 (1997)

    Article  CAS  Google Scholar 

  15. Yoshikawa, M. et al. Synthesis, characterization and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve. J. Phys. Chem. B 102, 7139–7147 (1998)

    Article  CAS  Google Scholar 

  16. Kinoshita, Y., Matsubara, I., Higuchi, T. & Saito, Y. The crystal structure of bis(adiponitrilo)copper (I) nitrate. Bull. Chem. Soc. Jpn 32, 1221–1226 (1959)

    Article  CAS  Google Scholar 

  17. Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Eddaoudi, M. et al. Systematic design of pore size and functionality in isorecticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Seki, K. Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun. 1496–1497 (2001)

  21. Jones, C. W., Tsuji, K. & Davis, M. E. Organic-functionalized molecular sieves as shape-selective catalysts. Nature 393, 52–54 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Seo, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kepert, C. J., Prior, T. J. & Rosseinsky, M. J. A versatile family of interconvertible microporous chiral molecular frameworks: The first example of ligand control of network chirality. J. Am. Chem. Soc. 122, 5158–5168 (2000)

    Article  CAS  Google Scholar 

  24. Chen, C. Y., Li, H. X. & Davis, M. E. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41. Microporous Mater. 2, 17–26 (1993)

    Article  Google Scholar 

  25. Annen, M. J. & Davis, M. E. Raman and 29Si MAS NMR spectroscopy of framework materials containing three-membered rings. Microporous Mater. 1, 57–65 (1993)

    Article  CAS  Google Scholar 

  26. De Man, A. J. M., Ueda, S., Annen, M. J., Davis, M. E. & van Santen, R. A. The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs. Zeolites 12, 789–800 (1992)

    Article  CAS  Google Scholar 

  27. Huo, Q. et al. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 368, 317–321 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T. & Terasaki, O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 121, 9611–9614 (1999)

    Article  CAS  Google Scholar 

  29. Attard, G. S. et al. Mesoporous Pt/Ru alloy from the hexagonal lyotropic liquid crystalline phase of a nonionic surfactant. Chem. Mater. 13, 1444–1446 (2001)

    Article  CAS  Google Scholar 

  30. Inagaki, S., Guan, S., Ohsuna, T. & Terasaki, O. Mesoporous organic-silica hybrid with crystal-like pore walls. Nature 416, 304–307 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Yanagisawa, T., Shimizu, T., Kuroda, K. & Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn 63, 988–992 (1990)

    Article  CAS  Google Scholar 

  32. Manton, M. R. S. & Davidtz, J. C. Controlled pore sizes and active site spacings determining selectivity in amorphous silica-alumina catalysts. J. Catal. 60, 156–166 (1979)

    Article  CAS  Google Scholar 

  33. Chiola, V., Ritsko, J. E. & Vanderpool, C. D. US Patent 3,556,725 (1971).

  34. Di Renzo, F., Cambon, H. & Dutarte, R. A 28-year-old-synthesis of micelle-templated mesoporous silica. Microporous Mater. 10, 283–286 (1997)

    Article  CAS  Google Scholar 

  35. Inagaki, S., Fukushima, Y. & Kuroda, K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc. Chem. Commun. 680–682 (1993)

  36. Chen, C. Y., Xiao, S. Q. & Davis, M. E. Studies on ordered mesoporous materials. III. Comparison of MCM-41 to mesoporous materials derived from kanemite. Microporous Mater. 4, 1–20 (1995)

    Article  Google Scholar 

  37. Sakamoto, Y. et al. Structure analysis of mesoporous material ‘FSM-16’—Studies by electron microscopy and X-ray diffraction. Microporous Mesoporous Mater. 21, 589–596 (1998)

    Article  CAS  Google Scholar 

  38. Kimura, T. et al. Formation of novel ordered mesoporous silicas with square channels and their direct observation by transmission electron microscopy. Angew. Chem. Int. Edn Engl. 39, 3855–3859 (2000)

    Article  CAS  Google Scholar 

  39. Landry, C. C. et al. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis. Chem. Mater. 13, 1600–1608 (2001)

    Article  CAS  Google Scholar 

  40. Navrotsky, A., Petrovic, I., Hu, Y., Chen, C. Y. & Davis, M. E. Little energetic limitation to microporous and mesoporous materials. Microporous Mater. 4, 95–98 (1995)

    Article  CAS  Google Scholar 

  41. Davis, M. E., Chen, C. Y., Burkett, S. L. & Lobo, R. L. Synthesis of (alumino)silicate materials using organic molecules and self-assembled organic aggregates as structure-directing agents. Mater. Res. Soc. Symp. Ser. Proc. 346, 831–842 (1994)

    Article  CAS  Google Scholar 

  42. Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22, a molecular-sieve with 2 independent multidimensional channel systems. Science 264, 1910–1913 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L. & Maler, B. A layered microporous aluminosilicate precursor of FER-type zeolite. J. Chem. Soc. Chem. Commun. 2187–2188 (1995)

  44. Brunner, G. O. & Meier, W. M. Framework density distribution of zeolite-type tetrahedral nets. Nature 337, 146–147 (1989)

    Article  ADS  CAS  Google Scholar 

  45. Meier, W. M. Zeolites and zeolite-like materials. Stud. Surf. Sci. Catal. 28, 13–22 (1986)

    Article  CAS  Google Scholar 

  46. Ueda, S., Koizumi, M., Baerlocher, Ch., McCusker, L. B. & Meier, W. M. 7th Int. Zeolite Conf., Tokyo, Poster Paper 3C-3 (1986).

  47. Davis, M. E. Multidimensional large pores. Nature 337, 117 (1989)

    Article  ADS  Google Scholar 

  48. Annen, M. J., Davis, M. E., Higgins, J. B. & Schlenker, J. L. VPI-7: The first zincosilicate molecular sieve containing three-membered T-atom rings. J. Chem. Soc. Chem. Commun. 1175–1176 (1991)

  49. Annen, M. J., Davis, M. E., Higgins, J. B. & Schlenker, J. L. The physicochemical properties of VPI-7: A microporous zincosilicate with three-membered rings. Mater. Res. Soc. Symp. Ser. Proc. 233, 245–253 (1991)

    Article  CAS  Google Scholar 

  50. Cheetham, A. et al. Very open microporous materials. From concept to reality. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 05-O-05 (Elsevier, 2001)

  51. Katovic, A. et al. Preparation and characterization of mesoporous molecular sieves containing Al, Fe or Zn. Microporous Mesoporous Mater. 44–45, 275–281 (2001)

    Article  Google Scholar 

  52. Haag, W. O. & Tsikoyiann, J. G. Membrane composed of a pure molecular sieve. US Patent 5,019,263 (1991).

  53. Wang, X. D. et al. Fabrication of hollow zeolite spheres. Chem. Commun. 2161–2162 (2000)

  54. Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B. J. & Mann, S. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chem. Mater. 12, 2832–2834 (2000)

    Article  CAS  Google Scholar 

  55. Huang, L. M. et al. Fabrication of ordered porous structures by self-assembly by zeolite nanocrystals. J. Am. Chem. Soc. 122, 3530–3531 (2000)

    Article  CAS  Google Scholar 

  56. Wang, H., Huang, L., Wang, Z., Mitra, A. & Yan, Y. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. Chem. Commun. 1364–1365 (2001)

  57. Tsapatsis, M., Okubo, T., Lovallo, M. & Davis, M. E. Synthesis and structure of ultrafine zeolite KL (LTL) crystallites and their use for thin film zeolite processing. Mater. Res. Soc. Symp. Ser. Proc. 371, 21–26 (1995)

    Article  CAS  Google Scholar 

  58. Shimizu, S. & Hamada, H. Direct conversion of bulk materials into MFI zeolites by a bulk-material dissolution technique. Adv. Mater. 12, 1332–1335 (2000)

    Article  CAS  Google Scholar 

  59. Anderson, M. W., Holmes, S. M., Hanif, N. & Cundy, C. S. Hierarchical pore structures through diatom zeolitization. Angew. Chem. Int. Edn Engl. 39, 2707–2710 (2000)

    Article  CAS  Google Scholar 

  60. Schacht, S., Huo, Q., Voigt-Martin, I. G., Stucky, G. D. & Schüth, F. Oil-water interface templating of mesoporous macroscale structures. Science 273, 768–771 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Bruinsma, P. J., Kim, A. Y., Liu, J. & Baskaran, S. Mesoporous silica synthesized by solvent evaporation: Spun fibers and spray-dried hollow spheres. Chem. Mater. 9, 2507–2512 (1997)

    Article  CAS  Google Scholar 

  62. Velev, O. D., Jede, T. A., Lobo, R. F. & Lenhoff, A. M. Porous silica via colloidal crystallization. Nature 389, 447–448 (1997)

    Article  ADS  CAS  Google Scholar 

  63. Stein, A. Sphere templating methods for periodic porous solids. Microporous Mesoporous Mater. 44–45, 227–239 (2001)

    Article  Google Scholar 

  64. Bein, T. Synthesis and applications of molecular sieve layers and membranes. Chem. Mater. 8, 1636–1653 (1996)

    Article  CAS  Google Scholar 

  65. Yan, Y. & Bein, T. Molecular sieve sensors for selective ethanol detection. Chem. Mater. 4, 975–977 (1992)

    Article  CAS  Google Scholar 

  66. Feng, S. & Bein, T. Growth of oriented molecular-sieve crystals on organophosphanate films. Nature 368, 834–836 (1994)

    Article  ADS  CAS  Google Scholar 

  67. Feng, S. & Bein, T. Vertical aluminophosphate molecular-sieve crystals grown at inorganic-organic interfaces. Science 265, 1839–1841 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Mintova, S., Mo, S. Y. & Bein, T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem. Mater. 13, 901–905 (2001)

    Article  CAS  Google Scholar 

  69. Wu, C. N., Chao, K. J., Tsai, T. G., Chiou, Y. H. & Shih, H. C. Oriented growth of molecular sieves on inorganic membranes. Adv. Mater. 8, 1008–1012 (1996)

    Article  CAS  Google Scholar 

  70. Scandella, L., Binder, G., Gobrecht, J. & Jansen, J. C. Alignment of single-crystal zeolites by means of microstructured surfaces. Adv. Mater. 8, 137–139 (1996)

    Article  CAS  Google Scholar 

  71. Caro, J. et al. Aligned molecular-sieve crystals. Adv. Mater. 4, 273–276 (1992)

    Article  CAS  Google Scholar 

  72. Okubo, T. et al. Heteroepitaxial growth of a zeolite. Angew. Chem. Int. Edn Engl. 40, 1069–1071 (2001)

    Article  CAS  Google Scholar 

  73. Wakihara, T. et al. Heteroepitaxial connection of zeolites with different pore structures. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 02-P-28 (Elsevier, 2001)

  74. Sun, J. T., Dartt, C. B. & Davis, M. E. Molecular sieve coated SAW device for the detection of carbon dioxide in the presence of water. Mater. Res. Soc. Symp. Ser. Proc. 360, 359–366 (1995)

    CAS  Google Scholar 

  75. Wang, Z. B., Wang, H. T., Mitra, A., Huang, L. M. & Yan, Y. S. Pure-silica zeolite low-k dielectric thin films. Adv. Mater. 13, 746–749 (2001)

    Article  CAS  Google Scholar 

  76. Geus, E. R., van Bekkum, H., Bakker, W. J. W. & Moulijn, J. A. High-temperature stainless steel supported zeolite (MFI) membranes: Preparation, module construction and permeation experiments. Microporous Mater. 1, 131–147 (1993)

    Article  CAS  Google Scholar 

  77. Jia, M. D., Peinemann, K. V. & Behling, R. D. Ceramic zeolite composite membranes. Preparation, characterization and gas permeation. J. Membr. Sci. 82, 15–26 (1993)

    Article  CAS  Google Scholar 

  78. Jia, M. D., Chen, B., Noble, R. D. & Falconer, J. Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures. J. Membr. Sci. 90, 1–10 (1994)

    Article  CAS  Google Scholar 

  79. Matsukata, M., Nishiyama, N. & Ueyama, K. Zeolitic membrane synthesized on a porous alumina support. J. Chem. Soc. Chem. Commun. 339–340 (1994)

  80. Yan, Y. H., Tsapatsis, M., Gavalas, G. R. & Davis, M. E. Zeolite ZSM-5 membrane grown on porous α-Al2O3 . J. Chem. Soc. Chem. Commun. 227–228 (1995)

  81. Vroon, Z. A. E. P., Keizer, K., Gilde, M. J., Verweij, H. & Burggraaf, A. J. Transport properties of alkanes through ceramic thin zeolite MFI membranes. J. Membr. Sci. 113, 293–300 (1996)

    Article  CAS  Google Scholar 

  82. Lovallo, M. C. & Tsapatsis, M. Preferentially oriented sub-micron silicalite membranes. AIChE J. 42, 3020–3029 (1996)

    Article  CAS  Google Scholar 

  83. Boudreau, L. & Tsapatsis, M. A highly oriented thin film of zeolite A. Chem. Mater. 9, 1705–1709 (1997)

    Article  CAS  Google Scholar 

  84. Balkus, K. J. Jr, Muñoz, T. & Gimon-Kinsel, M. E. Preparation of zeolite UTD-1 films by pulsed laser ablation: Evidence for oriented crystal growth. Chem. Mater. 10, 464–466 (1998)

    Article  Google Scholar 

  85. Wang, Z. B. & Yan, Y. S. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem. Mater. 13, 1101–1107 (2001)

    Article  CAS  Google Scholar 

  86. Xomeritakis, G., Lai, Z. P. & Tsapatsis, M. Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth. Ind. Eng. Chem. Res. 40, 544–552 (2001)

    Article  CAS  Google Scholar 

  87. Zhao, D. Y. et al. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998)

    Article  CAS  Google Scholar 

  88. Yang, C. M. et al. Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Adv. Mater. 13, 1089–1102 (2001)

    Google Scholar 

  89. Liu, J. et al. Mesoporous silica film from a solution containing a surfactant and methods of making same. US Patent 6,329,017 (2001).

  90. Wirnsberger, G., Scott, B. J. & Stucky, G. D. pH sensing with mesoporous thin films. Chem. Commun. 119–120 (2001)

  91. Fan, H. Y. et al. Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Lu, Y. F. et al. Evaporation-induced self-assembly of hybrid bridged silsesquixoane film and particulate mesophases with internal organic functionality. J. Am. Chem. Soc. 122, 5258–5261 (2000)

    Article  CAS  Google Scholar 

  93. Baskaran, S. et al. Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv. Mater. 12, 291–294 (2000)

    Article  CAS  Google Scholar 

  94. Doshi, D. A. et al. Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290, 107–111 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Tolbert, S. H., Firouzi, A., Stucky, G. D. & Chmelka, B. F. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278, 264–268 (1997)

    Article  CAS  Google Scholar 

  96. Hillhouse, H. W., Okubo, T., van Egmond, J. W. & Tsapatsis, M. Preparation of supported mesoporous silica layers in a continuous flow cell. Chem. Mater. 9, 1505–1507 (1997)

    Article  CAS  Google Scholar 

  97. Grün, M., Kurganov, A. A., Schacht, S., Schüth, F. & Unger, K. K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A 740, 1–9 (1996)

    Article  Google Scholar 

  98. Thoelen, C., van de Walle, K., Vankelecom, I. F. J. & Jacobs, P. J. The use of M41S materials in chiral HPLC. Chem. Commun. 1841–1842 (1999)

  99. Sierra, L., Lopez, B., Ramirez, A. & Guth, J. L. Evaluation of mesoporous silicas as stationary phases for high performance liquid chromatography (HPLC). Stud. Surf. Sci. Catal. 135, [CD ROM] Paper 18-P-06 (Elsevier, 2001)

  100. Miller, R. D. In search of low-k dielectrics. Science 286, 421–423 (1999)

    Article  CAS  Google Scholar 

  101. McCoy, M. Completing the circuit. Chem. Eng. News 78, 13–24 (2000)

    Google Scholar 

  102. Wang, Z., Wang, H., Mitra, A., Huang, L. & Yan, Y. Pure-silica zeolite low-k dielectric thin film by spin-on process. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 20-P-11 (Elsevier, 2001)

  103. Lauffer, R. B. Paramagnetic metal complexes as water protein relaxation agents for NMR imaging: Theory and design. Chem. Rev. 87, 901–927 (1987)

    Article  CAS  Google Scholar 

  104. Cacheris, W. P., Quay, S. C. & Rocklage, S. M. The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn. Reson. Imaging 8, 467–481 (1990)

    Article  CAS  PubMed  Google Scholar 

  105. Balkus, K. J. Jr, Sherry, A. D. & Young, S. W. Zeolite-enclosed transition and rare earth metal ions as contrast agents for the gastrointestinal tract. US Patent 5,122,363 (1992).

  106. Balkus, K. J. Jr, Bresinska, I., Kowalak, S. & Young, S. W. The application of molecular sieves as magnetic resonance image contrast agents. Mater. Res. Soc. Symp. Ser. Proc. 223, 225–230 (1991)

    Article  Google Scholar 

  107. Balkus, K. J. Jr & Shi, J. Studies of gadolinium (III)-modified hectorite clays as potential oral MRI contrast agents. J. Phys. Chem. 100, 16429–16434 (1996)

    Article  CAS  Google Scholar 

  108. Balkus, K. J. Jr & Shi, J. A study of suspended agents for gadolinium (III)-exchanged hetorite. An oral magnetic resonance imaging contrast agent. Langmuir 12, 6277–6281 (1996)

    Article  CAS  Google Scholar 

  109. Vietze, U. et al. Zeolite-dye microlasers. Phys. Rev. Lett. 81, 4628–4631 (1998)

    Article  ADS  CAS  Google Scholar 

  110. Ihlein, G., Schüth, F., Krauss, O., Vietze, U. & Laeri, F. Alignment of a laser dye in the channels of the AlPO4-5 molecular sieve. Adv. Mater. 10, 1117–1119 (1998)

    Article  CAS  Google Scholar 

  111. Weiß, O., Schüth, F., Benmohammadi, L. & Laeri, F. Potential microlasers based on AlPO4-5/DCM composites. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 21-O-04 (Elsevier, 2001)

  112. Yang, P. et al. Mirrorless lasing from mesostructured wave guides patterned by soft lithography. Science 287, 465–467 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Wirnsberger, G. & Stucky, G. D. Microring lasing from dye-doped silica/block copolymer nanocomposites. Chem. Mater. 12, 2525–2527 (2000)

    Article  CAS  Google Scholar 

  114. Wada, Y. et al. High efficiency near-IR emission of Nd(III) based low-vibrational environment in cages of nanosized zeolites. J. Am. Chem. Soc. 122, 8583–8584 (2000)

    Article  CAS  Google Scholar 

  115. Enzel, P. & Bein, T. Poly(acrylonitrile) chains in zeolite channels—Polymerization and pyrolysis. Chem. Mater. 4, 819–824 (1992)

    Article  CAS  Google Scholar 

  116. Kyotani, T., Nagai, T., Inoue, S. & Tomita, A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9, 609–615 (1997)

    Article  CAS  Google Scholar 

  117. Ma, Z., Kyotani, T., Liu, Z., Terasaki, O. & Tomita, A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chem. Mater. 13, 4413–4415 (2001)

    Article  CAS  Google Scholar 

  118. Johnson, S. A., Brigham, E. S., Olliver, P. J. & Mallouk, T. E. Effect of micropore topology on the structure and properties of zeolite polymer replicas. Chem. Mater. 9, 2448–2458 (1997)

    Article  CAS  Google Scholar 

  119. Ryoo, R., Joo, S. H. & Jun, J. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999)

    Article  CAS  Google Scholar 

  120. Lee, J. W., Yoon, S. H., Hyeon, T. H., Oh, S. M. & Kim, K. B. Synthesis of new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 2177–2178 (1999)

  121. Kruk, M., Jaroniec, M., Ryoo, R. & Joo, S. H. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. J. Phys. Chem. B 104, 7960–7968 (2000)

    Article  CAS  Google Scholar 

  122. Yoon, S. B., Kim, J. Y. & Yu, J. S. Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinyl benzene as precursor. Chem. Commun. 559–560 (2001)

  123. Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Wang, N., Tang, Z. K., Li, G. D. & Chen, J. S. Single-walled 4 Å carbon nanotube arrays. Nature 408, 50–51 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Tang, Z. K. et al. Superconductivity in 4 Å single-walled carbon nanotubes. Science 292, 2462–2465 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Dagani, R. Littlest carbon nanotube debuts. Chem. Eng. News 78, 9–10 (2000)

    Google Scholar 

  127. Wilson, E. Superconducting nanotubes. Chem. Eng. News 79, 8 (2001)

    Google Scholar 

  128. Davis, M. E. Evolution of extra-large pore materials. Stud. Surf. Sci. Catal. 135, 29–36 (2001)

    Article  Google Scholar 

  129. Bull, I. et al. Imposition of polarity on a centrosymmetric zeolite host: The effect of fluoride ions on template ordering in zeolite IFR. J. Am. Chem. Soc. 122, 7128–7129 (2000)

    Article  CAS  Google Scholar 

  130. Corma, A., Nemeth, L. T., Renz, M. & Valencia, S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature 412, 423–425 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Dessau, R. M., Schlenker, J. L. & Higgins, J. B. Framework topology of AlPO4-8—The first 14-ring molecular-sieve. Zeolites 10, 522–524 (1990)

    Article  CAS  Google Scholar 

  132. Vogt, E. T. C. & Richardson, J. W. The reversible transition of the molecular-sieve VPI-5 into AlPO4-8 and the structure of AlPO4-8. J. Solid State Chem. 87, 469–471 (1990)

    Article  ADS  CAS  Google Scholar 

  133. Loiseau, T. & Ferey, G. Oxyfluorinated microporous compounds. 7. Synthesis and crystal structure of ULM-5, a new fluorinated gallophosphate Ga16(PO4)14(HPO4)2(OH)2F7, [H3N(CH2)6NH3]4, 6 H2O with 16-membered rings and both bonding and encapsulated F-. J. Solid State Chem. 111, 403–415 (1994)

    Article  ADS  Google Scholar 

  134. Loiseau, T. & Ferey, G. Synthesis and crystal structure of ULM-16, a new open framework fluorinated gallium phosphate with 16-ring channels. Mater. Res. Soc. Symp. Ser. Proc. 431, 27–38 (1996)

    Article  CAS  Google Scholar 

  135. Zhou, Y. et al. A large 24-membered-ring germanate zeolite-type open-framework structure with three-dimensional intersecting channels. Angew. Chem. Int. Edn Engl. 40, 2166–2168 (2001)

    Article  CAS  Google Scholar 

  136. Lin, C. H., Wang, S. L. & Lii, K. H. [Ga2(DETA)(PO4)2] • (2H2O (DETA = diethylenetriamine): a novel porous gallium phosphate containing 24-ring channels. J. Am. Chem. Soc. 123, 4649–4650 (2001)

    Article  CAS  PubMed  Google Scholar 

  137. Rohrig, C. & Gies, H. A new zincosilicate zeolite with 9-ring channels. Angew. Chem. Int. Edn Engl. 34, 63–65 (1995)

    Article  Google Scholar 

  138. McCusker, L., Grosse-Kunstleve, R. W., Baerlocher, Ch., Yoshikawa, M. & Davis, M. E. Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9. Microporous Mater. 6, 295–309 (1996)

    Article  CAS  Google Scholar 

  139. Grosse-Kunstleve, R. W. Zeolite Structure Determination From Powder Data: Computer-based Incorporation of Crystal Chemical Information. PhD thesis, Swiss Federal Inst. Technol., Zürich (1996)

    Google Scholar 

  140. Park, S. H., Daniels, P. & Gies, H. RUB-23: A new microporous lithosilicate containing spiro-5 building units. Microporous Mesoporous Mater. 37, 129–143 (2000)

    Article  Google Scholar 

  141. Park, S. H., Parise, J. B. & Gies, H. Optimized synthesis and structural properties of lithosilicate RUB-29. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 09-O-05 (Elsevier, 2001)

  142. Li, H., Eddaoudi, M., Plevert, J., O'Keeffe, M. & Yaghi, O. M. Ge2ZrO6F2•(H2DAB)H2): A 4-connected microporous material with “bowtie” building units and an exceptional proportion of 3-rings. J. Am. Chem. Soc. 122, 12409–12410 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002). https://doi.org/10.1038/nature00785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00785

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing