Review Article | Published:

Ordered porous materials for emerging applications

Naturevolume 417pages813821 (2002) | Download Citation

Subjects

Abstract

“Space—the final frontier.” This preamble to a well-known television series captures the challenge encountered not only in space travel adventures, but also in the field of porous materials, which aims to control the size, shape and uniformity of the porous space and the atoms and molecules that define it. The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials. This has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents. In fact, porous materials now seem set to contribute to developments in areas ranging from microelectronics to medical diagnosis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Davis, M. E. & Lobo, R. F. Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992)

  2. 2

    Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997)

  3. 3

    Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crowder, C. A molecular sieve with eighteen-membered rings. Nature 331, 698–699 (1988)

  4. 4

    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

  5. 5

    Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3-D-linked molecular rods—A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4‴-tetracyanotetra-phenylmethane]BF4.XC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990)

  6. 6

    Suzuki, H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and process for production thereof. US Patent 4,699,892 (1987).

  7. 7

    Stucky, G. D. & MacDougall, J. E. Quantum confinement and host guest chemistry—Probing a new dimension. Science 247, 669–678 (1990)

  8. 8

    Davis, M. E. et al. Physicochemical properties of VPI-5. J. Am. Chem. Soc. 111, 3919–3924 (1989)

  9. 9

    Huo, Q. H. et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc. Chem. Commun. 875–876 (1992)

  10. 10

    Yang, G. Y. & Sevov, S. C. Zinc phosphate with gigantic pores of 24 tetrahedra. J. Am. Chem. Soc. 121, 8389–8390 (1999)

  11. 11

    Estermann, M., McCusker, L. B., Baerlocher, Ch., Merrouche, A. & Kessler, H. A synthetic gallophosphate molecular-sieve with a 20-tetrahedral-atom pore opening. Nature 352, 320–323 (1991)

  12. 12

    Kuznicki, S. M. et al. A titanosilicate molecular sieve with tunable pores and its use in gas separation. Nature 412, 720–724 (2001)

  13. 13

    Li, H. X. & Davis, M. E. Phosphate-based molecular sieves with pores comprised of greater than 12-rings. Catal. Today 19, 61–106 (1994)

  14. 14

    Lobo, R. F. et al. Characterization of the extra-large-pore zeolite UTD-1. J. Am. Chem. Soc. 119, 8474–8484 (1997)

  15. 15

    Yoshikawa, M. et al. Synthesis, characterization and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve. J. Phys. Chem. B 102, 7139–7147 (1998)

  16. 16

    Kinoshita, Y., Matsubara, I., Higuchi, T. & Saito, Y. The crystal structure of bis(adiponitrilo)copper (I) nitrate. Bull. Chem. Soc. Jpn 32, 1221–1226 (1959)

  17. 17

    Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

  18. 18

    Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001)

  19. 19

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isorecticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

  20. 20

    Seki, K. Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun. 1496–1497 (2001)

  21. 21

    Jones, C. W., Tsuji, K. & Davis, M. E. Organic-functionalized molecular sieves as shape-selective catalysts. Nature 393, 52–54 (1998)

  22. 22

    Seo, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000)

  23. 23

    Kepert, C. J., Prior, T. J. & Rosseinsky, M. J. A versatile family of interconvertible microporous chiral molecular frameworks: The first example of ligand control of network chirality. J. Am. Chem. Soc. 122, 5158–5168 (2000)

  24. 24

    Chen, C. Y., Li, H. X. & Davis, M. E. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41. Microporous Mater. 2, 17–26 (1993)

  25. 25

    Annen, M. J. & Davis, M. E. Raman and 29Si MAS NMR spectroscopy of framework materials containing three-membered rings. Microporous Mater. 1, 57–65 (1993)

  26. 26

    De Man, A. J. M., Ueda, S., Annen, M. J., Davis, M. E. & van Santen, R. A. The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs. Zeolites 12, 789–800 (1992)

  27. 27

    Huo, Q. et al. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 368, 317–321 (1994)

  28. 28

    Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T. & Terasaki, O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 121, 9611–9614 (1999)

  29. 29

    Attard, G. S. et al. Mesoporous Pt/Ru alloy from the hexagonal lyotropic liquid crystalline phase of a nonionic surfactant. Chem. Mater. 13, 1444–1446 (2001)

  30. 30

    Inagaki, S., Guan, S., Ohsuna, T. & Terasaki, O. Mesoporous organic-silica hybrid with crystal-like pore walls. Nature 416, 304–307 (2002)

  31. 31

    Yanagisawa, T., Shimizu, T., Kuroda, K. & Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn 63, 988–992 (1990)

  32. 32

    Manton, M. R. S. & Davidtz, J. C. Controlled pore sizes and active site spacings determining selectivity in amorphous silica-alumina catalysts. J. Catal. 60, 156–166 (1979)

  33. 33

    Chiola, V., Ritsko, J. E. & Vanderpool, C. D. US Patent 3,556,725 (1971).

  34. 34

    Di Renzo, F., Cambon, H. & Dutarte, R. A 28-year-old-synthesis of micelle-templated mesoporous silica. Microporous Mater. 10, 283–286 (1997)

  35. 35

    Inagaki, S., Fukushima, Y. & Kuroda, K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc. Chem. Commun. 680–682 (1993)

  36. 36

    Chen, C. Y., Xiao, S. Q. & Davis, M. E. Studies on ordered mesoporous materials. III. Comparison of MCM-41 to mesoporous materials derived from kanemite. Microporous Mater. 4, 1–20 (1995)

  37. 37

    Sakamoto, Y. et al. Structure analysis of mesoporous material ‘FSM-16’—Studies by electron microscopy and X-ray diffraction. Microporous Mesoporous Mater. 21, 589–596 (1998)

  38. 38

    Kimura, T. et al. Formation of novel ordered mesoporous silicas with square channels and their direct observation by transmission electron microscopy. Angew. Chem. Int. Edn Engl. 39, 3855–3859 (2000)

  39. 39

    Landry, C. C. et al. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis. Chem. Mater. 13, 1600–1608 (2001)

  40. 40

    Navrotsky, A., Petrovic, I., Hu, Y., Chen, C. Y. & Davis, M. E. Little energetic limitation to microporous and mesoporous materials. Microporous Mater. 4, 95–98 (1995)

  41. 41

    Davis, M. E., Chen, C. Y., Burkett, S. L. & Lobo, R. L. Synthesis of (alumino)silicate materials using organic molecules and self-assembled organic aggregates as structure-directing agents. Mater. Res. Soc. Symp. Ser. Proc. 346, 831–842 (1994)

  42. 42

    Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22, a molecular-sieve with 2 independent multidimensional channel systems. Science 264, 1910–1913 (1994)

  43. 43

    Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L. & Maler, B. A layered microporous aluminosilicate precursor of FER-type zeolite. J. Chem. Soc. Chem. Commun. 2187–2188 (1995)

  44. 44

    Brunner, G. O. & Meier, W. M. Framework density distribution of zeolite-type tetrahedral nets. Nature 337, 146–147 (1989)

  45. 45

    Meier, W. M. Zeolites and zeolite-like materials. Stud. Surf. Sci. Catal. 28, 13–22 (1986)

  46. 46

    Ueda, S., Koizumi, M., Baerlocher, Ch., McCusker, L. B. & Meier, W. M. 7th Int. Zeolite Conf., Tokyo, Poster Paper 3C-3 (1986).

  47. 47

    Davis, M. E. Multidimensional large pores. Nature 337, 117 (1989)

  48. 48

    Annen, M. J., Davis, M. E., Higgins, J. B. & Schlenker, J. L. VPI-7: The first zincosilicate molecular sieve containing three-membered T-atom rings. J. Chem. Soc. Chem. Commun. 1175–1176 (1991)

  49. 49

    Annen, M. J., Davis, M. E., Higgins, J. B. & Schlenker, J. L. The physicochemical properties of VPI-7: A microporous zincosilicate with three-membered rings. Mater. Res. Soc. Symp. Ser. Proc. 233, 245–253 (1991)

  50. 50

    Cheetham, A. et al. Very open microporous materials. From concept to reality. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 05-O-05 (Elsevier, 2001)

  51. 51

    Katovic, A. et al. Preparation and characterization of mesoporous molecular sieves containing Al, Fe or Zn. Microporous Mesoporous Mater. 44–45, 275–281 (2001)

  52. 52

    Haag, W. O. & Tsikoyiann, J. G. Membrane composed of a pure molecular sieve. US Patent 5,019,263 (1991).

  53. 53

    Wang, X. D. et al. Fabrication of hollow zeolite spheres. Chem. Commun. 2161–2162 (2000)

  54. 54

    Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B. J. & Mann, S. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chem. Mater. 12, 2832–2834 (2000)

  55. 55

    Huang, L. M. et al. Fabrication of ordered porous structures by self-assembly by zeolite nanocrystals. J. Am. Chem. Soc. 122, 3530–3531 (2000)

  56. 56

    Wang, H., Huang, L., Wang, Z., Mitra, A. & Yan, Y. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. Chem. Commun. 1364–1365 (2001)

  57. 57

    Tsapatsis, M., Okubo, T., Lovallo, M. & Davis, M. E. Synthesis and structure of ultrafine zeolite KL (LTL) crystallites and their use for thin film zeolite processing. Mater. Res. Soc. Symp. Ser. Proc. 371, 21–26 (1995)

  58. 58

    Shimizu, S. & Hamada, H. Direct conversion of bulk materials into MFI zeolites by a bulk-material dissolution technique. Adv. Mater. 12, 1332–1335 (2000)

  59. 59

    Anderson, M. W., Holmes, S. M., Hanif, N. & Cundy, C. S. Hierarchical pore structures through diatom zeolitization. Angew. Chem. Int. Edn Engl. 39, 2707–2710 (2000)

  60. 60

    Schacht, S., Huo, Q., Voigt-Martin, I. G., Stucky, G. D. & Schüth, F. Oil-water interface templating of mesoporous macroscale structures. Science 273, 768–771 (1996)

  61. 61

    Bruinsma, P. J., Kim, A. Y., Liu, J. & Baskaran, S. Mesoporous silica synthesized by solvent evaporation: Spun fibers and spray-dried hollow spheres. Chem. Mater. 9, 2507–2512 (1997)

  62. 62

    Velev, O. D., Jede, T. A., Lobo, R. F. & Lenhoff, A. M. Porous silica via colloidal crystallization. Nature 389, 447–448 (1997)

  63. 63

    Stein, A. Sphere templating methods for periodic porous solids. Microporous Mesoporous Mater. 44–45, 227–239 (2001)

  64. 64

    Bein, T. Synthesis and applications of molecular sieve layers and membranes. Chem. Mater. 8, 1636–1653 (1996)

  65. 65

    Yan, Y. & Bein, T. Molecular sieve sensors for selective ethanol detection. Chem. Mater. 4, 975–977 (1992)

  66. 66

    Feng, S. & Bein, T. Growth of oriented molecular-sieve crystals on organophosphanate films. Nature 368, 834–836 (1994)

  67. 67

    Feng, S. & Bein, T. Vertical aluminophosphate molecular-sieve crystals grown at inorganic-organic interfaces. Science 265, 1839–1841 (1994)

  68. 68

    Mintova, S., Mo, S. Y. & Bein, T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem. Mater. 13, 901–905 (2001)

  69. 69

    Wu, C. N., Chao, K. J., Tsai, T. G., Chiou, Y. H. & Shih, H. C. Oriented growth of molecular sieves on inorganic membranes. Adv. Mater. 8, 1008–1012 (1996)

  70. 70

    Scandella, L., Binder, G., Gobrecht, J. & Jansen, J. C. Alignment of single-crystal zeolites by means of microstructured surfaces. Adv. Mater. 8, 137–139 (1996)

  71. 71

    Caro, J. et al. Aligned molecular-sieve crystals. Adv. Mater. 4, 273–276 (1992)

  72. 72

    Okubo, T. et al. Heteroepitaxial growth of a zeolite. Angew. Chem. Int. Edn Engl. 40, 1069–1071 (2001)

  73. 73

    Wakihara, T. et al. Heteroepitaxial connection of zeolites with different pore structures. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 02-P-28 (Elsevier, 2001)

  74. 74

    Sun, J. T., Dartt, C. B. & Davis, M. E. Molecular sieve coated SAW device for the detection of carbon dioxide in the presence of water. Mater. Res. Soc. Symp. Ser. Proc. 360, 359–366 (1995)

  75. 75

    Wang, Z. B., Wang, H. T., Mitra, A., Huang, L. M. & Yan, Y. S. Pure-silica zeolite low-k dielectric thin films. Adv. Mater. 13, 746–749 (2001)

  76. 76

    Geus, E. R., van Bekkum, H., Bakker, W. J. W. & Moulijn, J. A. High-temperature stainless steel supported zeolite (MFI) membranes: Preparation, module construction and permeation experiments. Microporous Mater. 1, 131–147 (1993)

  77. 77

    Jia, M. D., Peinemann, K. V. & Behling, R. D. Ceramic zeolite composite membranes. Preparation, characterization and gas permeation. J. Membr. Sci. 82, 15–26 (1993)

  78. 78

    Jia, M. D., Chen, B., Noble, R. D. & Falconer, J. Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures. J. Membr. Sci. 90, 1–10 (1994)

  79. 79

    Matsukata, M., Nishiyama, N. & Ueyama, K. Zeolitic membrane synthesized on a porous alumina support. J. Chem. Soc. Chem. Commun. 339–340 (1994)

  80. 80

    Yan, Y. H., Tsapatsis, M., Gavalas, G. R. & Davis, M. E. Zeolite ZSM-5 membrane grown on porous α-Al2O3 . J. Chem. Soc. Chem. Commun. 227–228 (1995)

  81. 81

    Vroon, Z. A. E. P., Keizer, K., Gilde, M. J., Verweij, H. & Burggraaf, A. J. Transport properties of alkanes through ceramic thin zeolite MFI membranes. J. Membr. Sci. 113, 293–300 (1996)

  82. 82

    Lovallo, M. C. & Tsapatsis, M. Preferentially oriented sub-micron silicalite membranes. AIChE J. 42, 3020–3029 (1996)

  83. 83

    Boudreau, L. & Tsapatsis, M. A highly oriented thin film of zeolite A. Chem. Mater. 9, 1705–1709 (1997)

  84. 84

    Balkus, K. J. Jr, Muñoz, T. & Gimon-Kinsel, M. E. Preparation of zeolite UTD-1 films by pulsed laser ablation: Evidence for oriented crystal growth. Chem. Mater. 10, 464–466 (1998)

  85. 85

    Wang, Z. B. & Yan, Y. S. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem. Mater. 13, 1101–1107 (2001)

  86. 86

    Xomeritakis, G., Lai, Z. P. & Tsapatsis, M. Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth. Ind. Eng. Chem. Res. 40, 544–552 (2001)

  87. 87

    Zhao, D. Y. et al. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998)

  88. 88

    Yang, C. M. et al. Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Adv. Mater. 13, 1089–1102 (2001)

  89. 89

    Liu, J. et al. Mesoporous silica film from a solution containing a surfactant and methods of making same. US Patent 6,329,017 (2001).

  90. 90

    Wirnsberger, G., Scott, B. J. & Stucky, G. D. pH sensing with mesoporous thin films. Chem. Commun. 119–120 (2001)

  91. 91

    Fan, H. Y. et al. Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000)

  92. 92

    Lu, Y. F. et al. Evaporation-induced self-assembly of hybrid bridged silsesquixoane film and particulate mesophases with internal organic functionality. J. Am. Chem. Soc. 122, 5258–5261 (2000)

  93. 93

    Baskaran, S. et al. Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv. Mater. 12, 291–294 (2000)

  94. 94

    Doshi, D. A. et al. Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290, 107–111 (2000)

  95. 95

    Tolbert, S. H., Firouzi, A., Stucky, G. D. & Chmelka, B. F. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278, 264–268 (1997)

  96. 96

    Hillhouse, H. W., Okubo, T., van Egmond, J. W. & Tsapatsis, M. Preparation of supported mesoporous silica layers in a continuous flow cell. Chem. Mater. 9, 1505–1507 (1997)

  97. 97

    Grün, M., Kurganov, A. A., Schacht, S., Schüth, F. & Unger, K. K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A 740, 1–9 (1996)

  98. 98

    Thoelen, C., van de Walle, K., Vankelecom, I. F. J. & Jacobs, P. J. The use of M41S materials in chiral HPLC. Chem. Commun. 1841–1842 (1999)

  99. 99

    Sierra, L., Lopez, B., Ramirez, A. & Guth, J. L. Evaluation of mesoporous silicas as stationary phases for high performance liquid chromatography (HPLC). Stud. Surf. Sci. Catal. 135, [CD ROM] Paper 18-P-06 (Elsevier, 2001)

  100. 100

    Miller, R. D. In search of low-k dielectrics. Science 286, 421–423 (1999)

  101. 101

    McCoy, M. Completing the circuit. Chem. Eng. News 78, 13–24 (2000)

  102. 102

    Wang, Z., Wang, H., Mitra, A., Huang, L. & Yan, Y. Pure-silica zeolite low-k dielectric thin film by spin-on process. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 20-P-11 (Elsevier, 2001)

  103. 103

    Lauffer, R. B. Paramagnetic metal complexes as water protein relaxation agents for NMR imaging: Theory and design. Chem. Rev. 87, 901–927 (1987)

  104. 104

    Cacheris, W. P., Quay, S. C. & Rocklage, S. M. The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn. Reson. Imaging 8, 467–481 (1990)

  105. 105

    Balkus, K. J. Jr, Sherry, A. D. & Young, S. W. Zeolite-enclosed transition and rare earth metal ions as contrast agents for the gastrointestinal tract. US Patent 5,122,363 (1992).

  106. 106

    Balkus, K. J. Jr, Bresinska, I., Kowalak, S. & Young, S. W. The application of molecular sieves as magnetic resonance image contrast agents. Mater. Res. Soc. Symp. Ser. Proc. 223, 225–230 (1991)

  107. 107

    Balkus, K. J. Jr & Shi, J. Studies of gadolinium (III)-modified hectorite clays as potential oral MRI contrast agents. J. Phys. Chem. 100, 16429–16434 (1996)

  108. 108

    Balkus, K. J. Jr & Shi, J. A study of suspended agents for gadolinium (III)-exchanged hetorite. An oral magnetic resonance imaging contrast agent. Langmuir 12, 6277–6281 (1996)

  109. 109

    Vietze, U. et al. Zeolite-dye microlasers. Phys. Rev. Lett. 81, 4628–4631 (1998)

  110. 110

    Ihlein, G., Schüth, F., Krauss, O., Vietze, U. & Laeri, F. Alignment of a laser dye in the channels of the AlPO4-5 molecular sieve. Adv. Mater. 10, 1117–1119 (1998)

  111. 111

    Weiß, O., Schüth, F., Benmohammadi, L. & Laeri, F. Potential microlasers based on AlPO4-5/DCM composites. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 21-O-04 (Elsevier, 2001)

  112. 112

    Yang, P. et al. Mirrorless lasing from mesostructured wave guides patterned by soft lithography. Science 287, 465–467 (2000)

  113. 113

    Wirnsberger, G. & Stucky, G. D. Microring lasing from dye-doped silica/block copolymer nanocomposites. Chem. Mater. 12, 2525–2527 (2000)

  114. 114

    Wada, Y. et al. High efficiency near-IR emission of Nd(III) based low-vibrational environment in cages of nanosized zeolites. J. Am. Chem. Soc. 122, 8583–8584 (2000)

  115. 115

    Enzel, P. & Bein, T. Poly(acrylonitrile) chains in zeolite channels—Polymerization and pyrolysis. Chem. Mater. 4, 819–824 (1992)

  116. 116

    Kyotani, T., Nagai, T., Inoue, S. & Tomita, A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9, 609–615 (1997)

  117. 117

    Ma, Z., Kyotani, T., Liu, Z., Terasaki, O. & Tomita, A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chem. Mater. 13, 4413–4415 (2001)

  118. 118

    Johnson, S. A., Brigham, E. S., Olliver, P. J. & Mallouk, T. E. Effect of micropore topology on the structure and properties of zeolite polymer replicas. Chem. Mater. 9, 2448–2458 (1997)

  119. 119

    Ryoo, R., Joo, S. H. & Jun, J. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999)

  120. 120

    Lee, J. W., Yoon, S. H., Hyeon, T. H., Oh, S. M. & Kim, K. B. Synthesis of new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 2177–2178 (1999)

  121. 121

    Kruk, M., Jaroniec, M., Ryoo, R. & Joo, S. H. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. J. Phys. Chem. B 104, 7960–7968 (2000)

  122. 122

    Yoon, S. B., Kim, J. Y. & Yu, J. S. Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinyl benzene as precursor. Chem. Commun. 559–560 (2001)

  123. 123

    Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001)

  124. 124

    Wang, N., Tang, Z. K., Li, G. D. & Chen, J. S. Single-walled 4 Å carbon nanotube arrays. Nature 408, 50–51 (2000)

  125. 125

    Tang, Z. K. et al. Superconductivity in 4 Å single-walled carbon nanotubes. Science 292, 2462–2465 (2001)

  126. 126

    Dagani, R. Littlest carbon nanotube debuts. Chem. Eng. News 78, 9–10 (2000)

  127. 127

    Wilson, E. Superconducting nanotubes. Chem. Eng. News 79, 8 (2001)

  128. 128

    Davis, M. E. Evolution of extra-large pore materials. Stud. Surf. Sci. Catal. 135, 29–36 (2001)

  129. 129

    Bull, I. et al. Imposition of polarity on a centrosymmetric zeolite host: The effect of fluoride ions on template ordering in zeolite IFR. J. Am. Chem. Soc. 122, 7128–7129 (2000)

  130. 130

    Corma, A., Nemeth, L. T., Renz, M. & Valencia, S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature 412, 423–425 (2001)

  131. 131

    Dessau, R. M., Schlenker, J. L. & Higgins, J. B. Framework topology of AlPO4-8—The first 14-ring molecular-sieve. Zeolites 10, 522–524 (1990)

  132. 132

    Vogt, E. T. C. & Richardson, J. W. The reversible transition of the molecular-sieve VPI-5 into AlPO4-8 and the structure of AlPO4-8. J. Solid State Chem. 87, 469–471 (1990)

  133. 133

    Loiseau, T. & Ferey, G. Oxyfluorinated microporous compounds. 7. Synthesis and crystal structure of ULM-5, a new fluorinated gallophosphate Ga16(PO4)14(HPO4)2(OH)2F7, [H3N(CH2)6NH3]4, 6 H2O with 16-membered rings and both bonding and encapsulated F-. J. Solid State Chem. 111, 403–415 (1994)

  134. 134

    Loiseau, T. & Ferey, G. Synthesis and crystal structure of ULM-16, a new open framework fluorinated gallium phosphate with 16-ring channels. Mater. Res. Soc. Symp. Ser. Proc. 431, 27–38 (1996)

  135. 135

    Zhou, Y. et al. A large 24-membered-ring germanate zeolite-type open-framework structure with three-dimensional intersecting channels. Angew. Chem. Int. Edn Engl. 40, 2166–2168 (2001)

  136. 136

    Lin, C. H., Wang, S. L. & Lii, K. H. [Ga2(DETA)(PO4)2] • (2H2O (DETA = diethylenetriamine): a novel porous gallium phosphate containing 24-ring channels. J. Am. Chem. Soc. 123, 4649–4650 (2001)

  137. 137

    Rohrig, C. & Gies, H. A new zincosilicate zeolite with 9-ring channels. Angew. Chem. Int. Edn Engl. 34, 63–65 (1995)

  138. 138

    McCusker, L., Grosse-Kunstleve, R. W., Baerlocher, Ch., Yoshikawa, M. & Davis, M. E. Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9. Microporous Mater. 6, 295–309 (1996)

  139. 139

    Grosse-Kunstleve, R. W. Zeolite Structure Determination From Powder Data: Computer-based Incorporation of Crystal Chemical Information. PhD thesis, Swiss Federal Inst. Technol., Zürich (1996)

  140. 140

    Park, S. H., Daniels, P. & Gies, H. RUB-23: A new microporous lithosilicate containing spiro-5 building units. Microporous Mesoporous Mater. 37, 129–143 (2000)

  141. 141

    Park, S. H., Parise, J. B. & Gies, H. Optimized synthesis and structural properties of lithosilicate RUB-29. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 09-O-05 (Elsevier, 2001)

  142. 142

    Li, H., Eddaoudi, M., Plevert, J., O'Keeffe, M. & Yaghi, O. M. Ge2ZrO6F2•(H2DAB)H2): A 4-connected microporous material with “bowtie” building units and an exceptional proportion of 3-rings. J. Am. Chem. Soc. 122, 12409–12410 (2000)

Download references

Author information

Affiliations

  1. Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA

    • Mark E. Davis

Authors

  1. Search for Mark E. Davis in:

Corresponding author

Correspondence to Mark E. Davis.

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/nature00785

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.